Active microrheology in two-dimensional magnetic networks
We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures via a constant force f . Structural changes in the network around the p...
Gespeichert in:
Veröffentlicht in: | Soft matter 2019, Vol.15 (22), p.4437-4444 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4444 |
---|---|
container_issue | 22 |
container_start_page | 4437 |
container_title | Soft matter |
container_volume | 15 |
creator | Wang, Hanqing Mohori, Toma Zhang, Xianren Dobnikar, Jure Horbach, Jürgen |
description | We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures
via
a constant force
f
. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force,
f
= 0, both non-magnetic and magnetic tracer particles are localized,
i.e.
they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of
f
. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated
via
van Hove correlation functions and residence time distributions.
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly. |
doi_str_mv | 10.1039/c9sm00085b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31011733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235044798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9a2b3588eaa8c82099dc2057b55e26d636d0780c2ab68d50f552937596a1ae63</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKXpMlxDn_BxIM7eCtpms3MtplJ69h_b-fmBC95gXx4vPcNQqcEXxMM8kbLUGGMBcv3UJ-klMZcULG_u8NbDx2FMMcYBCX8EPWAYEJSgD6SQ93YLxNVVnvn340r3WwV2Tpqli4ubGXqYF2tyqhSs9o0VkfduXT-Ixyjg6kqgznZ1gGa3N9NRo_x-OXhaTQcxxpS2sRSJTkwIYxSQosES1noBLM0Z8wkvODAC5wKrBOVc1EwPGUskZAyyRVRhsMAXW7aLrz7bE1ossoGbcpS1ca1IUsSAoQBBdbRi3907lrfDb9WwDClqRSdutqobuEQvJlmC28r5VcZwdk6z2wkX59_8rzt8Pm2ZZtXptjR3wA7cLYBPujd69-HwDdWGHh2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235044798</pqid></control><display><type>article</type><title>Active microrheology in two-dimensional magnetic networks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Hanqing ; Mohori, Toma ; Zhang, Xianren ; Dobnikar, Jure ; Horbach, Jürgen</creator><creatorcontrib>Wang, Hanqing ; Mohori, Toma ; Zhang, Xianren ; Dobnikar, Jure ; Horbach, Jürgen</creatorcontrib><description>We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures
via
a constant force
f
. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force,
f
= 0, both non-magnetic and magnetic tracer particles are localized,
i.e.
they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of
f
. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated
via
van Hove correlation functions and residence time distributions.
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm00085b</identifier><identifier>PMID: 31011733</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Coefficient of friction ; Computer simulation ; Mathematical models ; Tracer particles</subject><ispartof>Soft matter, 2019, Vol.15 (22), p.4437-4444</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9a2b3588eaa8c82099dc2057b55e26d636d0780c2ab68d50f552937596a1ae63</citedby><cites>FETCH-LOGICAL-c374t-9a2b3588eaa8c82099dc2057b55e26d636d0780c2ab68d50f552937596a1ae63</cites><orcidid>0000-0002-1169-6619 ; 0000-0002-8026-9012 ; 0000-0003-3465-8380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31011733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hanqing</creatorcontrib><creatorcontrib>Mohori, Toma</creatorcontrib><creatorcontrib>Zhang, Xianren</creatorcontrib><creatorcontrib>Dobnikar, Jure</creatorcontrib><creatorcontrib>Horbach, Jürgen</creatorcontrib><title>Active microrheology in two-dimensional magnetic networks</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures
via
a constant force
f
. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force,
f
= 0, both non-magnetic and magnetic tracer particles are localized,
i.e.
they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of
f
. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated
via
van Hove correlation functions and residence time distributions.
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly.</description><subject>Coefficient of friction</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Tracer particles</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKXpMlxDn_BxIM7eCtpms3MtplJ69h_b-fmBC95gXx4vPcNQqcEXxMM8kbLUGGMBcv3UJ-klMZcULG_u8NbDx2FMMcYBCX8EPWAYEJSgD6SQ93YLxNVVnvn340r3WwV2Tpqli4ubGXqYF2tyqhSs9o0VkfduXT-Ixyjg6kqgznZ1gGa3N9NRo_x-OXhaTQcxxpS2sRSJTkwIYxSQosES1noBLM0Z8wkvODAC5wKrBOVc1EwPGUskZAyyRVRhsMAXW7aLrz7bE1ossoGbcpS1ca1IUsSAoQBBdbRi3907lrfDb9WwDClqRSdutqobuEQvJlmC28r5VcZwdk6z2wkX59_8rzt8Pm2ZZtXptjR3wA7cLYBPujd69-HwDdWGHh2</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Hanqing</creator><creator>Mohori, Toma</creator><creator>Zhang, Xianren</creator><creator>Dobnikar, Jure</creator><creator>Horbach, Jürgen</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1169-6619</orcidid><orcidid>https://orcid.org/0000-0002-8026-9012</orcidid><orcidid>https://orcid.org/0000-0003-3465-8380</orcidid></search><sort><creationdate>2019</creationdate><title>Active microrheology in two-dimensional magnetic networks</title><author>Wang, Hanqing ; Mohori, Toma ; Zhang, Xianren ; Dobnikar, Jure ; Horbach, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9a2b3588eaa8c82099dc2057b55e26d636d0780c2ab68d50f552937596a1ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coefficient of friction</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Tracer particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hanqing</creatorcontrib><creatorcontrib>Mohori, Toma</creatorcontrib><creatorcontrib>Zhang, Xianren</creatorcontrib><creatorcontrib>Dobnikar, Jure</creatorcontrib><creatorcontrib>Horbach, Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hanqing</au><au>Mohori, Toma</au><au>Zhang, Xianren</au><au>Dobnikar, Jure</au><au>Horbach, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active microrheology in two-dimensional magnetic networks</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019</date><risdate>2019</risdate><volume>15</volume><issue>22</issue><spage>4437</spage><epage>4444</epage><pages>4437-4444</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures
via
a constant force
f
. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force,
f
= 0, both non-magnetic and magnetic tracer particles are localized,
i.e.
they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of
f
. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated
via
van Hove correlation functions and residence time distributions.
We study active microrheology in 2D with Langevin simulations of tracer particles pulled through magnetic networks by a constant force. While non-magnetic tracers strongly deform the network in order to be able to move through, the magnetic tracers can do so by deforming the structure only slightly.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31011733</pmid><doi>10.1039/c9sm00085b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1169-6619</orcidid><orcidid>https://orcid.org/0000-0002-8026-9012</orcidid><orcidid>https://orcid.org/0000-0003-3465-8380</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019, Vol.15 (22), p.4437-4444 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_pubmed_primary_31011733 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Coefficient of friction Computer simulation Mathematical models Tracer particles |
title | Active microrheology in two-dimensional magnetic networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20microrheology%20in%20two-dimensional%20magnetic%20networks&rft.jtitle=Soft%20matter&rft.au=Wang,%20Hanqing&rft.date=2019&rft.volume=15&rft.issue=22&rft.spage=4437&rft.epage=4444&rft.pages=4437-4444&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm00085b&rft_dat=%3Cproquest_pubme%3E2235044798%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235044798&rft_id=info:pmid/31011733&rfr_iscdi=true |