Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems

We propose a new quantum transition-state theory for calculating Fermi’s golden-rule rates in complex multidimensional systems. This method is able to account for the nuclear quantum effects of delocalization, zero-point energy, and tunneling in an electron-transfer reaction. It is related to instan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-03, Vol.150 (10), p.104107-104107
Hauptverfasser: Thapa, Manish J., Fang, Wei, Richardson, Jeremy O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104107
container_issue 10
container_start_page 104107
container_title The Journal of chemical physics
container_volume 150
creator Thapa, Manish J.
Fang, Wei
Richardson, Jeremy O.
description We propose a new quantum transition-state theory for calculating Fermi’s golden-rule rates in complex multidimensional systems. This method is able to account for the nuclear quantum effects of delocalization, zero-point energy, and tunneling in an electron-transfer reaction. It is related to instanton theory but can be computed by path-integral sampling and is thus applicable to treat molecular reactions in solution. A constraint functional based on energy conservation is introduced which ensures that the dominant paths contributing to the reaction rate are sampled. We prove that the theory gives exact results for a system of crossed linear potentials and show numerically that it is also accurate for anharmonic systems. There is still a certain amount of freedom available in generalizing the method to multidimensional systems, and the suggestion we make here is exact in the classical limit but not rigorously size consistent in general. It is nonetheless seen to perform well for multidimensional spin-boson models, where it even gives good predictions for rates in the Marcus inverted regime.
doi_str_mv 10.1063/1.5081108
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30876356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190773212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-998477dd856da85af7cfbf5a60c3b50e7018efe1824d0f211201b1a15359f9ec3</originalsourceid><addsrcrecordid>eNp90T1v2zAQBmCiaNA4aYf8gYJAlySA3DvR_NBYBPkCgmRJZ4EiqYaBRNokNfjfV66dDB2y3N3w4MXhjpAzhCWCYD9xyUEhgvpEFnNtKika-EwWADVWjQBxTE5yfgUAlPXqCzlmoKRgXCzI5jEGbb3udPGGbiYdyjTSknTIvvgYqlx0cbS8uJi21IfdRP_EwbpQpWlwdPCjL0t6v6TPe6ODpXq9HrzRuwBaIh2jdQPN21zcmL-So14P2X079FPy--b6-equeni6vb_69VAZplipmkatpLRWcWG14rqXpu96rgUY1nFwElC53qGqVxb6GrEG7FAjZ7zpG2fYKTnf565T3Ewul3b02bhh0MHFKbc1NgzFSgCf6Y__6GucUpi32ymQktVYz-pir0yKOSfXt-vkR522LUK7-0OL7eEPs_1-SJy60dl3-Xb4GVzuQTa-_DvUB2l_ARaAj6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190773212</pqid></control><display><type>article</type><title>Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Thapa, Manish J. ; Fang, Wei ; Richardson, Jeremy O.</creator><creatorcontrib>Thapa, Manish J. ; Fang, Wei ; Richardson, Jeremy O.</creatorcontrib><description>We propose a new quantum transition-state theory for calculating Fermi’s golden-rule rates in complex multidimensional systems. This method is able to account for the nuclear quantum effects of delocalization, zero-point energy, and tunneling in an electron-transfer reaction. It is related to instanton theory but can be computed by path-integral sampling and is thus applicable to treat molecular reactions in solution. A constraint functional based on energy conservation is introduced which ensures that the dominant paths contributing to the reaction rate are sampled. We prove that the theory gives exact results for a system of crossed linear potentials and show numerically that it is also accurate for anharmonic systems. There is still a certain amount of freedom available in generalizing the method to multidimensional systems, and the suggestion we make here is exact in the classical limit but not rigorously size consistent in general. It is nonetheless seen to perform well for multidimensional spin-boson models, where it even gives good predictions for rates in the Marcus inverted regime.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5081108</identifier><identifier>PMID: 30876356</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Energy conservation ; Mathematical models ; Nuclear reactions ; Physics</subject><ispartof>The Journal of chemical physics, 2019-03, Vol.150 (10), p.104107-104107</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-998477dd856da85af7cfbf5a60c3b50e7018efe1824d0f211201b1a15359f9ec3</citedby><cites>FETCH-LOGICAL-c383t-998477dd856da85af7cfbf5a60c3b50e7018efe1824d0f211201b1a15359f9ec3</cites><orcidid>0000-0001-9584-8466 ; 0000-0002-9429-151X ; 0000-0002-0737-4473 ; 0000000207374473 ; 0000000195848466 ; 000000029429151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5081108$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30876356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thapa, Manish J.</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><title>Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We propose a new quantum transition-state theory for calculating Fermi’s golden-rule rates in complex multidimensional systems. This method is able to account for the nuclear quantum effects of delocalization, zero-point energy, and tunneling in an electron-transfer reaction. It is related to instanton theory but can be computed by path-integral sampling and is thus applicable to treat molecular reactions in solution. A constraint functional based on energy conservation is introduced which ensures that the dominant paths contributing to the reaction rate are sampled. We prove that the theory gives exact results for a system of crossed linear potentials and show numerically that it is also accurate for anharmonic systems. There is still a certain amount of freedom available in generalizing the method to multidimensional systems, and the suggestion we make here is exact in the classical limit but not rigorously size consistent in general. It is nonetheless seen to perform well for multidimensional spin-boson models, where it even gives good predictions for rates in the Marcus inverted regime.</description><subject>Anharmonicity</subject><subject>Energy conservation</subject><subject>Mathematical models</subject><subject>Nuclear reactions</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90T1v2zAQBmCiaNA4aYf8gYJAlySA3DvR_NBYBPkCgmRJZ4EiqYaBRNokNfjfV66dDB2y3N3w4MXhjpAzhCWCYD9xyUEhgvpEFnNtKika-EwWADVWjQBxTE5yfgUAlPXqCzlmoKRgXCzI5jEGbb3udPGGbiYdyjTSknTIvvgYqlx0cbS8uJi21IfdRP_EwbpQpWlwdPCjL0t6v6TPe6ODpXq9HrzRuwBaIh2jdQPN21zcmL-So14P2X079FPy--b6-equeni6vb_69VAZplipmkatpLRWcWG14rqXpu96rgUY1nFwElC53qGqVxb6GrEG7FAjZ7zpG2fYKTnf565T3Ewul3b02bhh0MHFKbc1NgzFSgCf6Y__6GucUpi32ymQktVYz-pir0yKOSfXt-vkR522LUK7-0OL7eEPs_1-SJy60dl3-Xb4GVzuQTa-_DvUB2l_ARaAj6g</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Thapa, Manish J.</creator><creator>Fang, Wei</creator><creator>Richardson, Jeremy O.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9584-8466</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><orcidid>https://orcid.org/0000-0002-0737-4473</orcidid><orcidid>https://orcid.org/0000000207374473</orcidid><orcidid>https://orcid.org/0000000195848466</orcidid><orcidid>https://orcid.org/000000029429151X</orcidid></search><sort><creationdate>20190314</creationdate><title>Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems</title><author>Thapa, Manish J. ; Fang, Wei ; Richardson, Jeremy O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-998477dd856da85af7cfbf5a60c3b50e7018efe1824d0f211201b1a15359f9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anharmonicity</topic><topic>Energy conservation</topic><topic>Mathematical models</topic><topic>Nuclear reactions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thapa, Manish J.</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Richardson, Jeremy O.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thapa, Manish J.</au><au>Fang, Wei</au><au>Richardson, Jeremy O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>150</volume><issue>10</issue><spage>104107</spage><epage>104107</epage><pages>104107-104107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We propose a new quantum transition-state theory for calculating Fermi’s golden-rule rates in complex multidimensional systems. This method is able to account for the nuclear quantum effects of delocalization, zero-point energy, and tunneling in an electron-transfer reaction. It is related to instanton theory but can be computed by path-integral sampling and is thus applicable to treat molecular reactions in solution. A constraint functional based on energy conservation is introduced which ensures that the dominant paths contributing to the reaction rate are sampled. We prove that the theory gives exact results for a system of crossed linear potentials and show numerically that it is also accurate for anharmonic systems. There is still a certain amount of freedom available in generalizing the method to multidimensional systems, and the suggestion we make here is exact in the classical limit but not rigorously size consistent in general. It is nonetheless seen to perform well for multidimensional spin-boson models, where it even gives good predictions for rates in the Marcus inverted regime.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30876356</pmid><doi>10.1063/1.5081108</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9584-8466</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><orcidid>https://orcid.org/0000-0002-0737-4473</orcidid><orcidid>https://orcid.org/0000000207374473</orcidid><orcidid>https://orcid.org/0000000195848466</orcidid><orcidid>https://orcid.org/000000029429151X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-03, Vol.150 (10), p.104107-104107
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_30876356
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anharmonicity
Energy conservation
Mathematical models
Nuclear reactions
Physics
title Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20quantum%20transition-state%20theory%20in%20the%20golden-rule%20limit.%20I.%20Theory%20and%20application%20to%20model%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Thapa,%20Manish%20J.&rft.date=2019-03-14&rft.volume=150&rft.issue=10&rft.spage=104107&rft.epage=104107&rft.pages=104107-104107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5081108&rft_dat=%3Cproquest_pubme%3E2190773212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190773212&rft_id=info:pmid/30876356&rfr_iscdi=true