Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors
We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2019-02, Vol.90 (2), p.023908-023908 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023908 |
---|---|
container_issue | 2 |
container_start_page | 023908 |
container_title | Review of scientific instruments |
container_volume | 90 |
creator | McKenney, Christopher M. Austermann, Jason E. Beall, James A. Dober, Bradley J. Duff, Shannon M. Gao, Jiansong Hilton, Gene C. Hubmayr, Johannes Li, Dale Ullom, Joel N. Van Lanen, Jeff L. Vissers, Michael R. |
description | We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies. |
doi_str_mv | 10.1063/1.5037301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30831721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179153943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</originalsourceid><addsrcrecordid>eNp90cFO3DAQBmALgcpCe-AFUEQvFCl0HMdxfEQIWiSkXqh6tBxnwholcbAdxPbp6-1uQQKpvvjgz2PPP4QcUTinULGv9JwDEwzoDllQqGUuqoLtkgUAK_NKlPU-OQjhAdLilH4g-wxqRkVBF-TXne0x12ObR2-HbLDGu9xjcKOOzmfae73KOt14a3S0bszcFO1gf2Obdel8ae-X2TD30U49PtvxPlmTLoaPZK_TfcBP2_2Q_Ly-urv8nt_--HZzeXGbG17WMaemlgV02DHJmkpwQAGA0NQN04gcWcUlkwKLDrksUZdGNthWVQGlFlXq-ZCcbOq6EK0KxkY0S-PGEU1UlEMpCp7Q6QZN3j3OGKIabDDY93pENwdV0LouUm5sTT-_oQ9u9mNqISkhKWeyZEl92aiUVggeOzWl9LRfKQpqPRJF1XYkyR5vK87NgO2L_DeDBM42YP37vyG_mCfnXyupqe3-h98__Qf0UqD-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179153943</pqid></control><display><type>article</type><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R.</creator><creatorcontrib>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5037301</identifier><identifier>PMID: 30831721</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Arrays ; Inductance ; MATERIALS SCIENCE ; Multiplexing ; Normal distribution ; OTHER INSTRUMENTATION ; Photolithography ; Resonators ; Reticles ; Scientific apparatus & instruments ; Superconductivity ; Titanium</subject><ispartof>Review of scientific instruments, 2019-02, Vol.90 (2), p.023908-023908</ispartof><rights>U.S. Government</rights><rights>2019U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</citedby><cites>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</cites><orcidid>0000-0002-6338-0069 ; 0000000263380069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5037301$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30831721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1504725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McKenney, Christopher M.</creatorcontrib><creatorcontrib>Austermann, Jason E.</creatorcontrib><creatorcontrib>Beall, James A.</creatorcontrib><creatorcontrib>Dober, Bradley J.</creatorcontrib><creatorcontrib>Duff, Shannon M.</creatorcontrib><creatorcontrib>Gao, Jiansong</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Hubmayr, Johannes</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Van Lanen, Jeff L.</creatorcontrib><creatorcontrib>Vissers, Michael R.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</description><subject>Arrays</subject><subject>Inductance</subject><subject>MATERIALS SCIENCE</subject><subject>Multiplexing</subject><subject>Normal distribution</subject><subject>OTHER INSTRUMENTATION</subject><subject>Photolithography</subject><subject>Resonators</subject><subject>Reticles</subject><subject>Scientific apparatus & instruments</subject><subject>Superconductivity</subject><subject>Titanium</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90cFO3DAQBmALgcpCe-AFUEQvFCl0HMdxfEQIWiSkXqh6tBxnwholcbAdxPbp6-1uQQKpvvjgz2PPP4QcUTinULGv9JwDEwzoDllQqGUuqoLtkgUAK_NKlPU-OQjhAdLilH4g-wxqRkVBF-TXne0x12ObR2-HbLDGu9xjcKOOzmfae73KOt14a3S0bszcFO1gf2Obdel8ae-X2TD30U49PtvxPlmTLoaPZK_TfcBP2_2Q_Ly-urv8nt_--HZzeXGbG17WMaemlgV02DHJmkpwQAGA0NQN04gcWcUlkwKLDrksUZdGNthWVQGlFlXq-ZCcbOq6EK0KxkY0S-PGEU1UlEMpCp7Q6QZN3j3OGKIabDDY93pENwdV0LouUm5sTT-_oQ9u9mNqISkhKWeyZEl92aiUVggeOzWl9LRfKQpqPRJF1XYkyR5vK87NgO2L_DeDBM42YP37vyG_mCfnXyupqe3-h98__Qf0UqD-</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>McKenney, Christopher M.</creator><creator>Austermann, Jason E.</creator><creator>Beall, James A.</creator><creator>Dober, Bradley J.</creator><creator>Duff, Shannon M.</creator><creator>Gao, Jiansong</creator><creator>Hilton, Gene C.</creator><creator>Hubmayr, Johannes</creator><creator>Li, Dale</creator><creator>Ullom, Joel N.</creator><creator>Van Lanen, Jeff L.</creator><creator>Vissers, Michael R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid><orcidid>https://orcid.org/0000000263380069</orcidid></search><sort><creationdate>20190201</creationdate><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><author>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Inductance</topic><topic>MATERIALS SCIENCE</topic><topic>Multiplexing</topic><topic>Normal distribution</topic><topic>OTHER INSTRUMENTATION</topic><topic>Photolithography</topic><topic>Resonators</topic><topic>Reticles</topic><topic>Scientific apparatus & instruments</topic><topic>Superconductivity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKenney, Christopher M.</creatorcontrib><creatorcontrib>Austermann, Jason E.</creatorcontrib><creatorcontrib>Beall, James A.</creatorcontrib><creatorcontrib>Dober, Bradley J.</creatorcontrib><creatorcontrib>Duff, Shannon M.</creatorcontrib><creatorcontrib>Gao, Jiansong</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Hubmayr, Johannes</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Van Lanen, Jeff L.</creatorcontrib><creatorcontrib>Vissers, Michael R.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKenney, Christopher M.</au><au>Austermann, Jason E.</au><au>Beall, James A.</au><au>Dober, Bradley J.</au><au>Duff, Shannon M.</au><au>Gao, Jiansong</au><au>Hilton, Gene C.</au><au>Hubmayr, Johannes</au><au>Li, Dale</au><au>Ullom, Joel N.</au><au>Van Lanen, Jeff L.</au><au>Vissers, Michael R.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>90</volume><issue>2</issue><spage>023908</spage><epage>023908</epage><pages>023908-023908</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30831721</pmid><doi>10.1063/1.5037301</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid><orcidid>https://orcid.org/0000000263380069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2019-02, Vol.90 (2), p.023908-023908 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_30831721 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Arrays Inductance MATERIALS SCIENCE Multiplexing Normal distribution OTHER INSTRUMENTATION Photolithography Resonators Reticles Scientific apparatus & instruments Superconductivity Titanium |
title | Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tile-and-trim%20micro-resonator%20array%20fabrication%20optimized%20for%20high%20multiplexing%20factors&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=McKenney,%20Christopher%20M.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-02-01&rft.volume=90&rft.issue=2&rft.spage=023908&rft.epage=023908&rft.pages=023908-023908&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5037301&rft_dat=%3Cproquest_pubme%3E2179153943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179153943&rft_id=info:pmid/30831721&rfr_iscdi=true |