Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors

We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2019-02, Vol.90 (2), p.023908-023908
Hauptverfasser: McKenney, Christopher M., Austermann, Jason E., Beall, James A., Dober, Bradley J., Duff, Shannon M., Gao, Jiansong, Hilton, Gene C., Hubmayr, Johannes, Li, Dale, Ullom, Joel N., Van Lanen, Jeff L., Vissers, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023908
container_issue 2
container_start_page 023908
container_title Review of scientific instruments
container_volume 90
creator McKenney, Christopher M.
Austermann, Jason E.
Beall, James A.
Dober, Bradley J.
Duff, Shannon M.
Gao, Jiansong
Hilton, Gene C.
Hubmayr, Johannes
Li, Dale
Ullom, Joel N.
Van Lanen, Jeff L.
Vissers, Michael R.
description We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.
doi_str_mv 10.1063/1.5037301
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30831721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179153943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</originalsourceid><addsrcrecordid>eNp90cFO3DAQBmALgcpCe-AFUEQvFCl0HMdxfEQIWiSkXqh6tBxnwholcbAdxPbp6-1uQQKpvvjgz2PPP4QcUTinULGv9JwDEwzoDllQqGUuqoLtkgUAK_NKlPU-OQjhAdLilH4g-wxqRkVBF-TXne0x12ObR2-HbLDGu9xjcKOOzmfae73KOt14a3S0bszcFO1gf2Obdel8ae-X2TD30U49PtvxPlmTLoaPZK_TfcBP2_2Q_Ly-urv8nt_--HZzeXGbG17WMaemlgV02DHJmkpwQAGA0NQN04gcWcUlkwKLDrksUZdGNthWVQGlFlXq-ZCcbOq6EK0KxkY0S-PGEU1UlEMpCp7Q6QZN3j3OGKIabDDY93pENwdV0LouUm5sTT-_oQ9u9mNqISkhKWeyZEl92aiUVggeOzWl9LRfKQpqPRJF1XYkyR5vK87NgO2L_DeDBM42YP37vyG_mCfnXyupqe3-h98__Qf0UqD-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179153943</pqid></control><display><type>article</type><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R.</creator><creatorcontrib>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5037301</identifier><identifier>PMID: 30831721</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Arrays ; Inductance ; MATERIALS SCIENCE ; Multiplexing ; Normal distribution ; OTHER INSTRUMENTATION ; Photolithography ; Resonators ; Reticles ; Scientific apparatus &amp; instruments ; Superconductivity ; Titanium</subject><ispartof>Review of scientific instruments, 2019-02, Vol.90 (2), p.023908-023908</ispartof><rights>U.S. Government</rights><rights>2019U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</citedby><cites>FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</cites><orcidid>0000-0002-6338-0069 ; 0000000263380069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5037301$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30831721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1504725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McKenney, Christopher M.</creatorcontrib><creatorcontrib>Austermann, Jason E.</creatorcontrib><creatorcontrib>Beall, James A.</creatorcontrib><creatorcontrib>Dober, Bradley J.</creatorcontrib><creatorcontrib>Duff, Shannon M.</creatorcontrib><creatorcontrib>Gao, Jiansong</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Hubmayr, Johannes</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Van Lanen, Jeff L.</creatorcontrib><creatorcontrib>Vissers, Michael R.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</description><subject>Arrays</subject><subject>Inductance</subject><subject>MATERIALS SCIENCE</subject><subject>Multiplexing</subject><subject>Normal distribution</subject><subject>OTHER INSTRUMENTATION</subject><subject>Photolithography</subject><subject>Resonators</subject><subject>Reticles</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Superconductivity</subject><subject>Titanium</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90cFO3DAQBmALgcpCe-AFUEQvFCl0HMdxfEQIWiSkXqh6tBxnwholcbAdxPbp6-1uQQKpvvjgz2PPP4QcUTinULGv9JwDEwzoDllQqGUuqoLtkgUAK_NKlPU-OQjhAdLilH4g-wxqRkVBF-TXne0x12ObR2-HbLDGu9xjcKOOzmfae73KOt14a3S0bszcFO1gf2Obdel8ae-X2TD30U49PtvxPlmTLoaPZK_TfcBP2_2Q_Ly-urv8nt_--HZzeXGbG17WMaemlgV02DHJmkpwQAGA0NQN04gcWcUlkwKLDrksUZdGNthWVQGlFlXq-ZCcbOq6EK0KxkY0S-PGEU1UlEMpCp7Q6QZN3j3OGKIabDDY93pENwdV0LouUm5sTT-_oQ9u9mNqISkhKWeyZEl92aiUVggeOzWl9LRfKQpqPRJF1XYkyR5vK87NgO2L_DeDBM42YP37vyG_mCfnXyupqe3-h98__Qf0UqD-</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>McKenney, Christopher M.</creator><creator>Austermann, Jason E.</creator><creator>Beall, James A.</creator><creator>Dober, Bradley J.</creator><creator>Duff, Shannon M.</creator><creator>Gao, Jiansong</creator><creator>Hilton, Gene C.</creator><creator>Hubmayr, Johannes</creator><creator>Li, Dale</creator><creator>Ullom, Joel N.</creator><creator>Van Lanen, Jeff L.</creator><creator>Vissers, Michael R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid><orcidid>https://orcid.org/0000000263380069</orcidid></search><sort><creationdate>20190201</creationdate><title>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</title><author>McKenney, Christopher M. ; Austermann, Jason E. ; Beall, James A. ; Dober, Bradley J. ; Duff, Shannon M. ; Gao, Jiansong ; Hilton, Gene C. ; Hubmayr, Johannes ; Li, Dale ; Ullom, Joel N. ; Van Lanen, Jeff L. ; Vissers, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-1c8920fef393b6750e700e0b8b3aee5e3659397e2fe594ea4c9bed66204a76373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Inductance</topic><topic>MATERIALS SCIENCE</topic><topic>Multiplexing</topic><topic>Normal distribution</topic><topic>OTHER INSTRUMENTATION</topic><topic>Photolithography</topic><topic>Resonators</topic><topic>Reticles</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Superconductivity</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKenney, Christopher M.</creatorcontrib><creatorcontrib>Austermann, Jason E.</creatorcontrib><creatorcontrib>Beall, James A.</creatorcontrib><creatorcontrib>Dober, Bradley J.</creatorcontrib><creatorcontrib>Duff, Shannon M.</creatorcontrib><creatorcontrib>Gao, Jiansong</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Hubmayr, Johannes</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Van Lanen, Jeff L.</creatorcontrib><creatorcontrib>Vissers, Michael R.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKenney, Christopher M.</au><au>Austermann, Jason E.</au><au>Beall, James A.</au><au>Dober, Bradley J.</au><au>Duff, Shannon M.</au><au>Gao, Jiansong</au><au>Hilton, Gene C.</au><au>Hubmayr, Johannes</au><au>Li, Dale</au><au>Ullom, Joel N.</au><au>Van Lanen, Jeff L.</au><au>Vissers, Michael R.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>90</volume><issue>2</issue><spage>023908</spage><epage>023908</epage><pages>023908-023908</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10−3. We exploit this finding to increase the yield of the BLAST-TNG 250 μm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30831721</pmid><doi>10.1063/1.5037301</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6338-0069</orcidid><orcidid>https://orcid.org/0000000263380069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2019-02, Vol.90 (2), p.023908-023908
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_30831721
source AIP Journals Complete; Alma/SFX Local Collection
subjects Arrays
Inductance
MATERIALS SCIENCE
Multiplexing
Normal distribution
OTHER INSTRUMENTATION
Photolithography
Resonators
Reticles
Scientific apparatus & instruments
Superconductivity
Titanium
title Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tile-and-trim%20micro-resonator%20array%20fabrication%20optimized%20for%20high%20multiplexing%20factors&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=McKenney,%20Christopher%20M.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-02-01&rft.volume=90&rft.issue=2&rft.spage=023908&rft.epage=023908&rft.pages=023908-023908&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5037301&rft_dat=%3Cproquest_pubme%3E2179153943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179153943&rft_id=info:pmid/30831721&rfr_iscdi=true