Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots

We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab ini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-07, Vol.31 (30), p.305503
Hauptverfasser: Saleem, Y, Najera Baldo, L, Delgado, A, Szulakowska, L, Hawrylak, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 30
container_start_page 305503
container_title Journal of physics. Condensed matter
container_volume 31
creator Saleem, Y
Najera Baldo, L
Delgado, A
Szulakowska, L
Hawrylak, P
description We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab initio density functional methods. The results of the tight binding model are analyzed by dividing zigzag graphene quantum dots into concentric rings. For each ring, the energy spectra, the wave functions and the bandgap are obtained analytically. The effect of inter-ring tunneling on the energy gap is determined. The growth of zigzag terminated GQD into armchair GQD is shown to be associated with the addition of a one-dimensional Lieb lattice of carbon atoms with a shell of energy levels in the middle of the energy gap of the inner zigzag terminated GQD. This introduces a different structure of the energy levels at the bottom of the conduction and top of the valence band in zigzag and armchair GQD which manifests itself in the oscillation of the energy gap with increasing size. The evolution of the bandgap with the number of carbon atoms is compared with the notion of confined Dirac Fermions and tested against ab initio calculations of Kohn-Sham and TD-DFT energy gaps.
doi_str_mv 10.1088/1361-648X/ab0b31
format Article
fullrecord <record><control><sourceid>pubmed_iop_j</sourceid><recordid>TN_cdi_pubmed_primary_30812024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30812024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-857296212c38e0519eb7cb8bf9f8842d05230eba17aa0ec0fd34502f9131501a3</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMobk7ffZK8-WLdTdJ06aMMv2AwEAXfQpombcb6YdIi7q-3o7onES5cuPecA-eH0CWBWwJCzAlLSJTE4n2uMsgYOULTw-kYTSHlLBKpiCfoLIQNAMSCxadowkAQCjSeopd10G67VZ1r6oAbi7vS4EzVeaFa_Om6Ege3M9jVWPlKl8p5PDzxzhU7VeDCq7Y0tcEfvaq7vsJ504VzdGLVNpiLnz1Dbw_3r8unaLV-fF7erSLNEtFFgi9omlBCNRMGOElNttCZyGxqhYhpDpwyMJkiC6XAaLA5izlQmxJGOBDFZgjGXO2bELyxsvWuUv5LEpB7PHLPQu5ZyBHPYLkaLW2fVSY_GH55DIKbUeCaVm6a3tdDg__yrv-Q60oyMmQOwzkw2eaWfQOYMHuh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Saleem, Y ; Najera Baldo, L ; Delgado, A ; Szulakowska, L ; Hawrylak, P</creator><creatorcontrib>Saleem, Y ; Najera Baldo, L ; Delgado, A ; Szulakowska, L ; Hawrylak, P</creatorcontrib><description>We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab initio density functional methods. The results of the tight binding model are analyzed by dividing zigzag graphene quantum dots into concentric rings. For each ring, the energy spectra, the wave functions and the bandgap are obtained analytically. The effect of inter-ring tunneling on the energy gap is determined. The growth of zigzag terminated GQD into armchair GQD is shown to be associated with the addition of a one-dimensional Lieb lattice of carbon atoms with a shell of energy levels in the middle of the energy gap of the inner zigzag terminated GQD. This introduces a different structure of the energy levels at the bottom of the conduction and top of the valence band in zigzag and armchair GQD which manifests itself in the oscillation of the energy gap with increasing size. The evolution of the bandgap with the number of carbon atoms is compared with the notion of confined Dirac Fermions and tested against ab initio calculations of Kohn-Sham and TD-DFT energy gaps.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab0b31</identifier><identifier>PMID: 30812024</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>armchair edge ; graphene ; graphene quantum dots ; tight binding ; zigzag edge</subject><ispartof>Journal of physics. Condensed matter, 2019-07, Vol.31 (30), p.305503</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-857296212c38e0519eb7cb8bf9f8842d05230eba17aa0ec0fd34502f9131501a3</citedby><cites>FETCH-LOGICAL-c368t-857296212c38e0519eb7cb8bf9f8842d05230eba17aa0ec0fd34502f9131501a3</cites><orcidid>0000-0002-0188-2207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab0b31/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30812024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleem, Y</creatorcontrib><creatorcontrib>Najera Baldo, L</creatorcontrib><creatorcontrib>Delgado, A</creatorcontrib><creatorcontrib>Szulakowska, L</creatorcontrib><creatorcontrib>Hawrylak, P</creatorcontrib><title>Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab initio density functional methods. The results of the tight binding model are analyzed by dividing zigzag graphene quantum dots into concentric rings. For each ring, the energy spectra, the wave functions and the bandgap are obtained analytically. The effect of inter-ring tunneling on the energy gap is determined. The growth of zigzag terminated GQD into armchair GQD is shown to be associated with the addition of a one-dimensional Lieb lattice of carbon atoms with a shell of energy levels in the middle of the energy gap of the inner zigzag terminated GQD. This introduces a different structure of the energy levels at the bottom of the conduction and top of the valence band in zigzag and armchair GQD which manifests itself in the oscillation of the energy gap with increasing size. The evolution of the bandgap with the number of carbon atoms is compared with the notion of confined Dirac Fermions and tested against ab initio calculations of Kohn-Sham and TD-DFT energy gaps.</description><subject>armchair edge</subject><subject>graphene</subject><subject>graphene quantum dots</subject><subject>tight binding</subject><subject>zigzag edge</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMobk7ffZK8-WLdTdJ06aMMv2AwEAXfQpombcb6YdIi7q-3o7onES5cuPecA-eH0CWBWwJCzAlLSJTE4n2uMsgYOULTw-kYTSHlLBKpiCfoLIQNAMSCxadowkAQCjSeopd10G67VZ1r6oAbi7vS4EzVeaFa_Om6Ege3M9jVWPlKl8p5PDzxzhU7VeDCq7Y0tcEfvaq7vsJ504VzdGLVNpiLnz1Dbw_3r8unaLV-fF7erSLNEtFFgi9omlBCNRMGOElNttCZyGxqhYhpDpwyMJkiC6XAaLA5izlQmxJGOBDFZgjGXO2bELyxsvWuUv5LEpB7PHLPQu5ZyBHPYLkaLW2fVSY_GH55DIKbUeCaVm6a3tdDg__yrv-Q60oyMmQOwzkw2eaWfQOYMHuh</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Saleem, Y</creator><creator>Najera Baldo, L</creator><creator>Delgado, A</creator><creator>Szulakowska, L</creator><creator>Hawrylak, P</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0188-2207</orcidid></search><sort><creationdate>20190731</creationdate><title>Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots</title><author>Saleem, Y ; Najera Baldo, L ; Delgado, A ; Szulakowska, L ; Hawrylak, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-857296212c38e0519eb7cb8bf9f8842d05230eba17aa0ec0fd34502f9131501a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>armchair edge</topic><topic>graphene</topic><topic>graphene quantum dots</topic><topic>tight binding</topic><topic>zigzag edge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Y</creatorcontrib><creatorcontrib>Najera Baldo, L</creatorcontrib><creatorcontrib>Delgado, A</creatorcontrib><creatorcontrib>Szulakowska, L</creatorcontrib><creatorcontrib>Hawrylak, P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Y</au><au>Najera Baldo, L</au><au>Delgado, A</au><au>Szulakowska, L</au><au>Hawrylak, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-07-31</date><risdate>2019</risdate><volume>31</volume><issue>30</issue><spage>305503</spage><pages>305503-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab initio density functional methods. The results of the tight binding model are analyzed by dividing zigzag graphene quantum dots into concentric rings. For each ring, the energy spectra, the wave functions and the bandgap are obtained analytically. The effect of inter-ring tunneling on the energy gap is determined. The growth of zigzag terminated GQD into armchair GQD is shown to be associated with the addition of a one-dimensional Lieb lattice of carbon atoms with a shell of energy levels in the middle of the energy gap of the inner zigzag terminated GQD. This introduces a different structure of the energy levels at the bottom of the conduction and top of the valence band in zigzag and armchair GQD which manifests itself in the oscillation of the energy gap with increasing size. The evolution of the bandgap with the number of carbon atoms is compared with the notion of confined Dirac Fermions and tested against ab initio calculations of Kohn-Sham and TD-DFT energy gaps.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30812024</pmid><doi>10.1088/1361-648X/ab0b31</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0188-2207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-07, Vol.31 (30), p.305503
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_30812024
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects armchair edge
graphene
graphene quantum dots
tight binding
zigzag edge
title Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations%20of%20the%20bandgap%20with%20size%20in%20armchair%20and%20zigzag%20graphene%20quantum%20dots&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Saleem,%20Y&rft.date=2019-07-31&rft.volume=31&rft.issue=30&rft.spage=305503&rft.pages=305503-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab0b31&rft_dat=%3Cpubmed_iop_j%3E30812024%3C/pubmed_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30812024&rfr_iscdi=true