Multi-User Redirected Walking and Resetting Using Artificial Potential Fields

Head-mounted displays (HMDs) and large area position tracking systems can enable users to navigate virtual worlds through natural walking. Redirected walking (RDW) imperceptibly steers immersed users away from physical world obstacles allowing them to explore unbounded virtual worlds while walking i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2019-05, Vol.25 (5), p.2022-2031
Hauptverfasser: Bachmann, Eric R., Hodgson, Eric, Hoffbauer, Cole, Messinger, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2031
container_issue 5
container_start_page 2022
container_title IEEE transactions on visualization and computer graphics
container_volume 25
creator Bachmann, Eric R.
Hodgson, Eric
Hoffbauer, Cole
Messinger, Justin
description Head-mounted displays (HMDs) and large area position tracking systems can enable users to navigate virtual worlds through natural walking. Redirected walking (RDW) imperceptibly steers immersed users away from physical world obstacles allowing them to explore unbounded virtual worlds while walking in limited physical space. In cases of imminent collisions, resetting techniques can reorient them into open space. This work introduces categorically new RDW and resetting algorithms based on the use of artificial potential fields that "push" users away from obstacles and other users. Data from human subject experiments indicate that these methods reduce potential single-user resets by 66% and increase the average distance between resets by 86% compared to previous techniques. A live multi-user study demonstrates the viability of the algorithm with up to 3 concurrent users, and simulation results indicate that the algorithm scales efficiently up to at least 8 users and is effective with larger groups.
doi_str_mv 10.1109/TVCG.2019.2898764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_30794513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8645818</ieee_id><sourcerecordid>2200828459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5a1ae4038cb4b1b093b6478e9aafe5111784f93b06f1d52576a549820c3b3ba63</originalsourceid><addsrcrecordid>eNpdkEtr3DAQgEVpaB7tDyiFstBLLt7M6GXpGJZuEkhIKLvtUcj2uCj12qkkH_LvY7ObHHLRPPTNMHyMfUVYIoK92PxeXS05oF1yY02p5Qd2glZiAQr0xymHsiy45vqYnab0CIBSGvuJHQsorVQoTtjd3djlUGwTxcUvakKkOlOz-OO7f6H_u_B9M7UT5TxX2zS_lzGHNtTBd4uHIVOf52wdqGvSZ3bU-i7Rl0M8Y9v1z83quri9v7pZXd4WtbBlLpRHTxKEqStZYQVWVFqWhqz3LSlELI1spyboFhvFVam9ktZwqEUlKq_FGTvf732Kw_-RUna7kGrqOt_TMCbH0SilrdQwoT_eoY_DGPvpOsc5gOFGKjtRuKfqOKQUqXVPMex8fHYIbnbtZtdudu0OrqeZ74fNY7Wj5m3iVe4EfNsDgYjevo2WyqARL04kgSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200828459</pqid></control><display><type>article</type><title>Multi-User Redirected Walking and Resetting Using Artificial Potential Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Bachmann, Eric R. ; Hodgson, Eric ; Hoffbauer, Cole ; Messinger, Justin</creator><creatorcontrib>Bachmann, Eric R. ; Hodgson, Eric ; Hoffbauer, Cole ; Messinger, Justin</creatorcontrib><description>Head-mounted displays (HMDs) and large area position tracking systems can enable users to navigate virtual worlds through natural walking. Redirected walking (RDW) imperceptibly steers immersed users away from physical world obstacles allowing them to explore unbounded virtual worlds while walking in limited physical space. In cases of imminent collisions, resetting techniques can reorient them into open space. This work introduces categorically new RDW and resetting algorithms based on the use of artificial potential fields that "push" users away from obstacles and other users. Data from human subject experiments indicate that these methods reduce potential single-user resets by 66% and increase the average distance between resets by 86% compared to previous techniques. A live multi-user study demonstrates the viability of the algorithm with up to 3 concurrent users, and simulation results indicate that the algorithm scales efficiently up to at least 8 users and is effective with larger groups.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2898764</identifier><identifier>PMID: 30794513</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; artificial potential field ; Barriers ; collision avoidance ; Computer Graphics ; Computer simulation ; Force ; Helmet mounted displays ; Humans ; Legged locomotion ; Navigation ; Orbits ; Orientation - physiology ; Potential fields ; redirected walking ; resetting ; Smart Glasses ; Space vehicles ; Tracking ; Tracking systems ; Viability ; Virtual environment ; Virtual Reality ; Walking ; Walking - physiology</subject><ispartof>IEEE transactions on visualization and computer graphics, 2019-05, Vol.25 (5), p.2022-2031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-5a1ae4038cb4b1b093b6478e9aafe5111784f93b06f1d52576a549820c3b3ba63</citedby><cites>FETCH-LOGICAL-c397t-5a1ae4038cb4b1b093b6478e9aafe5111784f93b06f1d52576a549820c3b3ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8645818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8645818$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30794513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachmann, Eric R.</creatorcontrib><creatorcontrib>Hodgson, Eric</creatorcontrib><creatorcontrib>Hoffbauer, Cole</creatorcontrib><creatorcontrib>Messinger, Justin</creatorcontrib><title>Multi-User Redirected Walking and Resetting Using Artificial Potential Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Head-mounted displays (HMDs) and large area position tracking systems can enable users to navigate virtual worlds through natural walking. Redirected walking (RDW) imperceptibly steers immersed users away from physical world obstacles allowing them to explore unbounded virtual worlds while walking in limited physical space. In cases of imminent collisions, resetting techniques can reorient them into open space. This work introduces categorically new RDW and resetting algorithms based on the use of artificial potential fields that "push" users away from obstacles and other users. Data from human subject experiments indicate that these methods reduce potential single-user resets by 66% and increase the average distance between resets by 86% compared to previous techniques. A live multi-user study demonstrates the viability of the algorithm with up to 3 concurrent users, and simulation results indicate that the algorithm scales efficiently up to at least 8 users and is effective with larger groups.</description><subject>Algorithms</subject><subject>artificial potential field</subject><subject>Barriers</subject><subject>collision avoidance</subject><subject>Computer Graphics</subject><subject>Computer simulation</subject><subject>Force</subject><subject>Helmet mounted displays</subject><subject>Humans</subject><subject>Legged locomotion</subject><subject>Navigation</subject><subject>Orbits</subject><subject>Orientation - physiology</subject><subject>Potential fields</subject><subject>redirected walking</subject><subject>resetting</subject><subject>Smart Glasses</subject><subject>Space vehicles</subject><subject>Tracking</subject><subject>Tracking systems</subject><subject>Viability</subject><subject>Virtual environment</subject><subject>Virtual Reality</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtr3DAQgEVpaB7tDyiFstBLLt7M6GXpGJZuEkhIKLvtUcj2uCj12qkkH_LvY7ObHHLRPPTNMHyMfUVYIoK92PxeXS05oF1yY02p5Qd2glZiAQr0xymHsiy45vqYnab0CIBSGvuJHQsorVQoTtjd3djlUGwTxcUvakKkOlOz-OO7f6H_u_B9M7UT5TxX2zS_lzGHNtTBd4uHIVOf52wdqGvSZ3bU-i7Rl0M8Y9v1z83quri9v7pZXd4WtbBlLpRHTxKEqStZYQVWVFqWhqz3LSlELI1spyboFhvFVam9ktZwqEUlKq_FGTvf732Kw_-RUna7kGrqOt_TMCbH0SilrdQwoT_eoY_DGPvpOsc5gOFGKjtRuKfqOKQUqXVPMex8fHYIbnbtZtdudu0OrqeZ74fNY7Wj5m3iVe4EfNsDgYjevo2WyqARL04kgSE</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Bachmann, Eric R.</creator><creator>Hodgson, Eric</creator><creator>Hoffbauer, Cole</creator><creator>Messinger, Justin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20190501</creationdate><title>Multi-User Redirected Walking and Resetting Using Artificial Potential Fields</title><author>Bachmann, Eric R. ; Hodgson, Eric ; Hoffbauer, Cole ; Messinger, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5a1ae4038cb4b1b093b6478e9aafe5111784f93b06f1d52576a549820c3b3ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>artificial potential field</topic><topic>Barriers</topic><topic>collision avoidance</topic><topic>Computer Graphics</topic><topic>Computer simulation</topic><topic>Force</topic><topic>Helmet mounted displays</topic><topic>Humans</topic><topic>Legged locomotion</topic><topic>Navigation</topic><topic>Orbits</topic><topic>Orientation - physiology</topic><topic>Potential fields</topic><topic>redirected walking</topic><topic>resetting</topic><topic>Smart Glasses</topic><topic>Space vehicles</topic><topic>Tracking</topic><topic>Tracking systems</topic><topic>Viability</topic><topic>Virtual environment</topic><topic>Virtual Reality</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachmann, Eric R.</creatorcontrib><creatorcontrib>Hodgson, Eric</creatorcontrib><creatorcontrib>Hoffbauer, Cole</creatorcontrib><creatorcontrib>Messinger, Justin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bachmann, Eric R.</au><au>Hodgson, Eric</au><au>Hoffbauer, Cole</au><au>Messinger, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-User Redirected Walking and Resetting Using Artificial Potential Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>25</volume><issue>5</issue><spage>2022</spage><epage>2031</epage><pages>2022-2031</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Head-mounted displays (HMDs) and large area position tracking systems can enable users to navigate virtual worlds through natural walking. Redirected walking (RDW) imperceptibly steers immersed users away from physical world obstacles allowing them to explore unbounded virtual worlds while walking in limited physical space. In cases of imminent collisions, resetting techniques can reorient them into open space. This work introduces categorically new RDW and resetting algorithms based on the use of artificial potential fields that "push" users away from obstacles and other users. Data from human subject experiments indicate that these methods reduce potential single-user resets by 66% and increase the average distance between resets by 86% compared to previous techniques. A live multi-user study demonstrates the viability of the algorithm with up to 3 concurrent users, and simulation results indicate that the algorithm scales efficiently up to at least 8 users and is effective with larger groups.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30794513</pmid><doi>10.1109/TVCG.2019.2898764</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2019-05, Vol.25 (5), p.2022-2031
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_30794513
source IEEE Electronic Library (IEL)
subjects Algorithms
artificial potential field
Barriers
collision avoidance
Computer Graphics
Computer simulation
Force
Helmet mounted displays
Humans
Legged locomotion
Navigation
Orbits
Orientation - physiology
Potential fields
redirected walking
resetting
Smart Glasses
Space vehicles
Tracking
Tracking systems
Viability
Virtual environment
Virtual Reality
Walking
Walking - physiology
title Multi-User Redirected Walking and Resetting Using Artificial Potential Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-User%20Redirected%20Walking%20and%20Resetting%20Using%20Artificial%20Potential%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Bachmann,%20Eric%20R.&rft.date=2019-05-01&rft.volume=25&rft.issue=5&rft.spage=2022&rft.epage=2031&rft.pages=2022-2031&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2898764&rft_dat=%3Cproquest_RIE%3E2200828459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200828459&rft_id=info:pmid/30794513&rft_ieee_id=8645818&rfr_iscdi=true