Ice crystallization observed in highly supercooled confined water
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the in...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019-02, Vol.21 (9), p.4931-4938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4938 |
---|---|
container_issue | 9 |
container_start_page | 4931 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Stefanutti, E Bove, L. E Lelong, G Ricci, M. A Soper, A. K Bruni, F |
description | We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around
Q
= 1.7 Å
−1
), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around
Q
= 0.2 Å
−1
), and the so-called Porod scattering at smaller
Q
, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different
Q
regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. |
doi_str_mv | 10.1039/c8cp07585a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30758013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186237586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgitPpxbtS8KJCNR9N2xxLUTcY6GH3kqaJ6-iamrST-debrrOCpzxefu-RvAfAFYKPCBL2JGLRwIjGlB-BMxSExGcwDo7HOAon4NzaNYQQUUROwYT0HCJyBpK5kJ4wO9vyqiq_eVvq2tO5lWYrC6-svVX5sap2nu0aaYTWlcsKXauydsEXb6W5ACeKV1ZeHs4pWL48L9OZv3h7nafJwhdBRFqfhRizICYKh5zFTKoY5lgpwnIqJIOQUqVkACkuckxFSGROi5xCV9HXKDIF90PbFa-yxpQbbnaZ5mU2SxZZn4OYBBhFcIucvRtsY_RnJ22bbUorZFXxWurOZhjFYYhY5MYzBbf_6Fp3pnYf2StM3KB69TAoYbS1RqrxBQhm_Q6yNE7f9ztIHL45tOzyjSxG-jt0B64HYKwYb_-WSH4AePWJTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186237586</pqid></control><display><type>article</type><title>Ice crystallization observed in highly supercooled confined water</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</creator><creatorcontrib>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</creatorcontrib><description>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around
Q
= 1.7 Å
−1
), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around
Q
= 0.2 Å
−1
), and the so-called Porod scattering at smaller
Q
, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different
Q
regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp07585a</identifier><identifier>PMID: 30758013</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bragg curve ; Chemical Physics ; Condensed Matter ; Crystallization ; Cylinders ; Diffraction ; Neutron scattering ; Physics ; Silicon dioxide ; Temperature dependence</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (9), p.4931-4938</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</citedby><cites>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</cites><orcidid>0000-0002-3561-8228 ; 0000-0002-2833-7049 ; 0000-0003-1386-8207 ; 0000-0002-6904-6686 ; 0000-0002-7903-8356 ; 0000-0002-2290-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30758013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02342170$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefanutti, E</creatorcontrib><creatorcontrib>Bove, L. E</creatorcontrib><creatorcontrib>Lelong, G</creatorcontrib><creatorcontrib>Ricci, M. A</creatorcontrib><creatorcontrib>Soper, A. K</creatorcontrib><creatorcontrib>Bruni, F</creatorcontrib><title>Ice crystallization observed in highly supercooled confined water</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around
Q
= 1.7 Å
−1
), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around
Q
= 0.2 Å
−1
), and the so-called Porod scattering at smaller
Q
, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different
Q
regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</description><subject>Bragg curve</subject><subject>Chemical Physics</subject><subject>Condensed Matter</subject><subject>Crystallization</subject><subject>Cylinders</subject><subject>Diffraction</subject><subject>Neutron scattering</subject><subject>Physics</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgitPpxbtS8KJCNR9N2xxLUTcY6GH3kqaJ6-iamrST-debrrOCpzxefu-RvAfAFYKPCBL2JGLRwIjGlB-BMxSExGcwDo7HOAon4NzaNYQQUUROwYT0HCJyBpK5kJ4wO9vyqiq_eVvq2tO5lWYrC6-svVX5sap2nu0aaYTWlcsKXauydsEXb6W5ACeKV1ZeHs4pWL48L9OZv3h7nafJwhdBRFqfhRizICYKh5zFTKoY5lgpwnIqJIOQUqVkACkuckxFSGROi5xCV9HXKDIF90PbFa-yxpQbbnaZ5mU2SxZZn4OYBBhFcIucvRtsY_RnJ22bbUorZFXxWurOZhjFYYhY5MYzBbf_6Fp3pnYf2StM3KB69TAoYbS1RqrxBQhm_Q6yNE7f9ztIHL45tOzyjSxG-jt0B64HYKwYb_-WSH4AePWJTA</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Stefanutti, E</creator><creator>Bove, L. E</creator><creator>Lelong, G</creator><creator>Ricci, M. A</creator><creator>Soper, A. K</creator><creator>Bruni, F</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3561-8228</orcidid><orcidid>https://orcid.org/0000-0002-2833-7049</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-6904-6686</orcidid><orcidid>https://orcid.org/0000-0002-7903-8356</orcidid><orcidid>https://orcid.org/0000-0002-2290-0283</orcidid></search><sort><creationdate>20190227</creationdate><title>Ice crystallization observed in highly supercooled confined water</title><author>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bragg curve</topic><topic>Chemical Physics</topic><topic>Condensed Matter</topic><topic>Crystallization</topic><topic>Cylinders</topic><topic>Diffraction</topic><topic>Neutron scattering</topic><topic>Physics</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanutti, E</creatorcontrib><creatorcontrib>Bove, L. E</creatorcontrib><creatorcontrib>Lelong, G</creatorcontrib><creatorcontrib>Ricci, M. A</creatorcontrib><creatorcontrib>Soper, A. K</creatorcontrib><creatorcontrib>Bruni, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanutti, E</au><au>Bove, L. E</au><au>Lelong, G</au><au>Ricci, M. A</au><au>Soper, A. K</au><au>Bruni, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice crystallization observed in highly supercooled confined water</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>21</volume><issue>9</issue><spage>4931</spage><epage>4938</epage><pages>4931-4938</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around
Q
= 1.7 Å
−1
), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around
Q
= 0.2 Å
−1
), and the so-called Porod scattering at smaller
Q
, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different
Q
regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30758013</pmid><doi>10.1039/c8cp07585a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3561-8228</orcidid><orcidid>https://orcid.org/0000-0002-2833-7049</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-6904-6686</orcidid><orcidid>https://orcid.org/0000-0002-7903-8356</orcidid><orcidid>https://orcid.org/0000-0002-2290-0283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (9), p.4931-4938 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_30758013 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bragg curve Chemical Physics Condensed Matter Crystallization Cylinders Diffraction Neutron scattering Physics Silicon dioxide Temperature dependence |
title | Ice crystallization observed in highly supercooled confined water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20crystallization%20observed%20in%20highly%20supercooled%20confined%20water&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Stefanutti,%20E&rft.date=2019-02-27&rft.volume=21&rft.issue=9&rft.spage=4931&rft.epage=4938&rft.pages=4931-4938&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp07585a&rft_dat=%3Cproquest_pubme%3E2186237586%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186237586&rft_id=info:pmid/30758013&rfr_iscdi=true |