Ice crystallization observed in highly supercooled confined water

We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-02, Vol.21 (9), p.4931-4938
Hauptverfasser: Stefanutti, E, Bove, L. E, Lelong, G, Ricci, M. A, Soper, A. K, Bruni, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4938
container_issue 9
container_start_page 4931
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Stefanutti, E
Bove, L. E
Lelong, G
Ricci, M. A
Soper, A. K
Bruni, F
description We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å −1 ), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å −1 ), and the so-called Porod scattering at smaller Q , which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water. We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.
doi_str_mv 10.1039/c8cp07585a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30758013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186237586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgitPpxbtS8KJCNR9N2xxLUTcY6GH3kqaJ6-iamrST-debrrOCpzxefu-RvAfAFYKPCBL2JGLRwIjGlB-BMxSExGcwDo7HOAon4NzaNYQQUUROwYT0HCJyBpK5kJ4wO9vyqiq_eVvq2tO5lWYrC6-svVX5sap2nu0aaYTWlcsKXauydsEXb6W5ACeKV1ZeHs4pWL48L9OZv3h7nafJwhdBRFqfhRizICYKh5zFTKoY5lgpwnIqJIOQUqVkACkuckxFSGROi5xCV9HXKDIF90PbFa-yxpQbbnaZ5mU2SxZZn4OYBBhFcIucvRtsY_RnJ22bbUorZFXxWurOZhjFYYhY5MYzBbf_6Fp3pnYf2StM3KB69TAoYbS1RqrxBQhm_Q6yNE7f9ztIHL45tOzyjSxG-jt0B64HYKwYb_-WSH4AePWJTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186237586</pqid></control><display><type>article</type><title>Ice crystallization observed in highly supercooled confined water</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</creator><creatorcontrib>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</creatorcontrib><description>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å −1 ), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å −1 ), and the so-called Porod scattering at smaller Q , which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water. We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp07585a</identifier><identifier>PMID: 30758013</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bragg curve ; Chemical Physics ; Condensed Matter ; Crystallization ; Cylinders ; Diffraction ; Neutron scattering ; Physics ; Silicon dioxide ; Temperature dependence</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (9), p.4931-4938</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</citedby><cites>FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</cites><orcidid>0000-0002-3561-8228 ; 0000-0002-2833-7049 ; 0000-0003-1386-8207 ; 0000-0002-6904-6686 ; 0000-0002-7903-8356 ; 0000-0002-2290-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30758013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02342170$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefanutti, E</creatorcontrib><creatorcontrib>Bove, L. E</creatorcontrib><creatorcontrib>Lelong, G</creatorcontrib><creatorcontrib>Ricci, M. A</creatorcontrib><creatorcontrib>Soper, A. K</creatorcontrib><creatorcontrib>Bruni, F</creatorcontrib><title>Ice crystallization observed in highly supercooled confined water</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å −1 ), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å −1 ), and the so-called Porod scattering at smaller Q , which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water. We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</description><subject>Bragg curve</subject><subject>Chemical Physics</subject><subject>Condensed Matter</subject><subject>Crystallization</subject><subject>Cylinders</subject><subject>Diffraction</subject><subject>Neutron scattering</subject><subject>Physics</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgitPpxbtS8KJCNR9N2xxLUTcY6GH3kqaJ6-iamrST-debrrOCpzxefu-RvAfAFYKPCBL2JGLRwIjGlB-BMxSExGcwDo7HOAon4NzaNYQQUUROwYT0HCJyBpK5kJ4wO9vyqiq_eVvq2tO5lWYrC6-svVX5sap2nu0aaYTWlcsKXauydsEXb6W5ACeKV1ZeHs4pWL48L9OZv3h7nafJwhdBRFqfhRizICYKh5zFTKoY5lgpwnIqJIOQUqVkACkuckxFSGROi5xCV9HXKDIF90PbFa-yxpQbbnaZ5mU2SxZZn4OYBBhFcIucvRtsY_RnJ22bbUorZFXxWurOZhjFYYhY5MYzBbf_6Fp3pnYf2StM3KB69TAoYbS1RqrxBQhm_Q6yNE7f9ztIHL45tOzyjSxG-jt0B64HYKwYb_-WSH4AePWJTA</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Stefanutti, E</creator><creator>Bove, L. E</creator><creator>Lelong, G</creator><creator>Ricci, M. A</creator><creator>Soper, A. K</creator><creator>Bruni, F</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3561-8228</orcidid><orcidid>https://orcid.org/0000-0002-2833-7049</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-6904-6686</orcidid><orcidid>https://orcid.org/0000-0002-7903-8356</orcidid><orcidid>https://orcid.org/0000-0002-2290-0283</orcidid></search><sort><creationdate>20190227</creationdate><title>Ice crystallization observed in highly supercooled confined water</title><author>Stefanutti, E ; Bove, L. E ; Lelong, G ; Ricci, M. A ; Soper, A. K ; Bruni, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-96229483f26a989ef80b2ff39b5ce90055ffe4052db25c63eb5db5048383f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bragg curve</topic><topic>Chemical Physics</topic><topic>Condensed Matter</topic><topic>Crystallization</topic><topic>Cylinders</topic><topic>Diffraction</topic><topic>Neutron scattering</topic><topic>Physics</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefanutti, E</creatorcontrib><creatorcontrib>Bove, L. E</creatorcontrib><creatorcontrib>Lelong, G</creatorcontrib><creatorcontrib>Ricci, M. A</creatorcontrib><creatorcontrib>Soper, A. K</creatorcontrib><creatorcontrib>Bruni, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefanutti, E</au><au>Bove, L. E</au><au>Lelong, G</au><au>Ricci, M. A</au><au>Soper, A. K</au><au>Bruni, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice crystallization observed in highly supercooled confined water</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>21</volume><issue>9</issue><spage>4931</spage><epage>4938</epage><pages>4931-4938</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å −1 ), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å −1 ), and the so-called Porod scattering at smaller Q , which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water. We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30758013</pmid><doi>10.1039/c8cp07585a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3561-8228</orcidid><orcidid>https://orcid.org/0000-0002-2833-7049</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-6904-6686</orcidid><orcidid>https://orcid.org/0000-0002-7903-8356</orcidid><orcidid>https://orcid.org/0000-0002-2290-0283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (9), p.4931-4938
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_30758013
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bragg curve
Chemical Physics
Condensed Matter
Crystallization
Cylinders
Diffraction
Neutron scattering
Physics
Silicon dioxide
Temperature dependence
title Ice crystallization observed in highly supercooled confined water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20crystallization%20observed%20in%20highly%20supercooled%20confined%20water&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Stefanutti,%20E&rft.date=2019-02-27&rft.volume=21&rft.issue=9&rft.spage=4931&rft.epage=4938&rft.pages=4931-4938&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp07585a&rft_dat=%3Cproquest_pubme%3E2186237586%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186237586&rft_id=info:pmid/30758013&rfr_iscdi=true