Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)

SAFT-γ Mie, a group-contribution equation of state rooted in Statistical Associating Fluid Theory, provides an efficient framework for developing accurate, transferable coarse-grained force fields for molecular simulation. Building on the success of SAFT-γ Mie force fields for small molecules, we ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-01, Vol.150 (3), p.034901-034901
Hauptverfasser: Walker, Christopher C., Genzer, Jan, Santiso, Erik E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 034901
container_issue 3
container_start_page 034901
container_title The Journal of chemical physics
container_volume 150
creator Walker, Christopher C.
Genzer, Jan
Santiso, Erik E.
description SAFT-γ Mie, a group-contribution equation of state rooted in Statistical Associating Fluid Theory, provides an efficient framework for developing accurate, transferable coarse-grained force fields for molecular simulation. Building on the success of SAFT-γ Mie force fields for small molecules, we address two key issues in extending the SAFT-γ Mie coarse-graining methodology to polymers: (1) the treatment of polymer chain rigidity and (2) the disparity between the structure of linear chains of tangent spheres and the structure of the real polymers. We use Boltzmann inversion to derive effective bond-stretching and angle-bending potentials mapped from all-atom oligomer molecular dynamics (MD) simulations to the coarse-grained sites and a fused-sphere version of SAFT-γ Mie as the basis for non-bonded interactions. The introduction of an overlap parameter between Mie spheres leads to a degeneracy when fitting to monomer vapor-liquid equilibria (VLE) data, which we resolve by matching polymer density from coarse-grained MD simulation with that from all-atom simulation. The result is a chain of monomers rigorously parameterized to experimental VLE data and with structural detail consistent with all-atom simulations. We test our approach on atactic poly(vinyl alcohol) and polyethylene and compare the results for SAFT-γ Mie models with structural detail mapped from the Optimized Potentials for Liquid Simulations (OPLS) and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) all-atom force fields.
doi_str_mv 10.1063/1.5078742
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30660157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179410211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e3f62894e3d258db0cb97092faaca7b6ab54044aa53bb977bb51664209de1e493</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgio6XhS8gATeOUD1p06RZDt5BcaGua9qeMpVMU5N2YJ7L9_CZjMyooOAmCcnHf8JPyD6DEwYiOWUnKchM8niNjBhkKpJCwToZAcQsUgLEFtn2_gUAmIz5JtlKQAhgqRyR53Oco7HdDNue2ppqWg8eq8h3U3RIHyaXj9H7G71rkNbWlWFt0FSfZ9pZsziaN-3CUG1KO7VmTHVbLe-xny4MtjjeJRu1Nh73VvsOebq8eDy7jm7vr27OJrdRmWRJH2FSizhTHJMqTrOqgLJQElRca11qWQhdpBw41zpNivAiiyJlQvAYVIUMuUp2yNEyt3P2dUDf57PGl2iMbtEOPo-ZVJyFQligh7_oix1cG34XlJBcpSyFoMZLVTrrvcM671wz026RM8g_a89Zvqo92INV4lDMsPqWXz0HcLwEvmx63Te2_TZz636S8q6q_8N_R38AjKaXhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167495150</pqid></control><display><type>article</type><title>Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Walker, Christopher C. ; Genzer, Jan ; Santiso, Erik E.</creator><creatorcontrib>Walker, Christopher C. ; Genzer, Jan ; Santiso, Erik E.</creatorcontrib><description>SAFT-γ Mie, a group-contribution equation of state rooted in Statistical Associating Fluid Theory, provides an efficient framework for developing accurate, transferable coarse-grained force fields for molecular simulation. Building on the success of SAFT-γ Mie force fields for small molecules, we address two key issues in extending the SAFT-γ Mie coarse-graining methodology to polymers: (1) the treatment of polymer chain rigidity and (2) the disparity between the structure of linear chains of tangent spheres and the structure of the real polymers. We use Boltzmann inversion to derive effective bond-stretching and angle-bending potentials mapped from all-atom oligomer molecular dynamics (MD) simulations to the coarse-grained sites and a fused-sphere version of SAFT-γ Mie as the basis for non-bonded interactions. The introduction of an overlap parameter between Mie spheres leads to a degeneracy when fitting to monomer vapor-liquid equilibria (VLE) data, which we resolve by matching polymer density from coarse-grained MD simulation with that from all-atom simulation. The result is a chain of monomers rigorously parameterized to experimental VLE data and with structural detail consistent with all-atom simulations. We test our approach on atactic poly(vinyl alcohol) and polyethylene and compare the results for SAFT-γ Mie models with structural detail mapped from the Optimized Potentials for Liquid Simulations (OPLS) and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) all-atom force fields.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5078742</identifier><identifier>PMID: 30660157</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Alcohol ; Atacticity ; Coarsening ; Computer simulation ; Equations of state ; Granulation ; Liquid-vapor equilibrium ; Molecular dynamics ; Monomers ; Polyethylenes ; Simulation</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (3), p.034901-034901</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e3f62894e3d258db0cb97092faaca7b6ab54044aa53bb977bb51664209de1e493</citedby><cites>FETCH-LOGICAL-c383t-e3f62894e3d258db0cb97092faaca7b6ab54044aa53bb977bb51664209de1e493</cites><orcidid>0000-0003-0804-0835 ; 0000-0002-1633-238X ; 0000-0003-1768-8414 ; 0000000308040835 ; 0000000317688414 ; 000000021633238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5078742$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30660157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, Christopher C.</creatorcontrib><creatorcontrib>Genzer, Jan</creatorcontrib><creatorcontrib>Santiso, Erik E.</creatorcontrib><title>Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>SAFT-γ Mie, a group-contribution equation of state rooted in Statistical Associating Fluid Theory, provides an efficient framework for developing accurate, transferable coarse-grained force fields for molecular simulation. Building on the success of SAFT-γ Mie force fields for small molecules, we address two key issues in extending the SAFT-γ Mie coarse-graining methodology to polymers: (1) the treatment of polymer chain rigidity and (2) the disparity between the structure of linear chains of tangent spheres and the structure of the real polymers. We use Boltzmann inversion to derive effective bond-stretching and angle-bending potentials mapped from all-atom oligomer molecular dynamics (MD) simulations to the coarse-grained sites and a fused-sphere version of SAFT-γ Mie as the basis for non-bonded interactions. The introduction of an overlap parameter between Mie spheres leads to a degeneracy when fitting to monomer vapor-liquid equilibria (VLE) data, which we resolve by matching polymer density from coarse-grained MD simulation with that from all-atom simulation. The result is a chain of monomers rigorously parameterized to experimental VLE data and with structural detail consistent with all-atom simulations. We test our approach on atactic poly(vinyl alcohol) and polyethylene and compare the results for SAFT-γ Mie models with structural detail mapped from the Optimized Potentials for Liquid Simulations (OPLS) and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) all-atom force fields.</description><subject>Alcohol</subject><subject>Atacticity</subject><subject>Coarsening</subject><subject>Computer simulation</subject><subject>Equations of state</subject><subject>Granulation</subject><subject>Liquid-vapor equilibrium</subject><subject>Molecular dynamics</subject><subject>Monomers</subject><subject>Polyethylenes</subject><subject>Simulation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgio6XhS8gATeOUD1p06RZDt5BcaGua9qeMpVMU5N2YJ7L9_CZjMyooOAmCcnHf8JPyD6DEwYiOWUnKchM8niNjBhkKpJCwToZAcQsUgLEFtn2_gUAmIz5JtlKQAhgqRyR53Oco7HdDNue2ppqWg8eq8h3U3RIHyaXj9H7G71rkNbWlWFt0FSfZ9pZsziaN-3CUG1KO7VmTHVbLe-xny4MtjjeJRu1Nh73VvsOebq8eDy7jm7vr27OJrdRmWRJH2FSizhTHJMqTrOqgLJQElRca11qWQhdpBw41zpNivAiiyJlQvAYVIUMuUp2yNEyt3P2dUDf57PGl2iMbtEOPo-ZVJyFQligh7_oix1cG34XlJBcpSyFoMZLVTrrvcM671wz026RM8g_a89Zvqo92INV4lDMsPqWXz0HcLwEvmx63Te2_TZz636S8q6q_8N_R38AjKaXhg</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Walker, Christopher C.</creator><creator>Genzer, Jan</creator><creator>Santiso, Erik E.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0804-0835</orcidid><orcidid>https://orcid.org/0000-0002-1633-238X</orcidid><orcidid>https://orcid.org/0000-0003-1768-8414</orcidid><orcidid>https://orcid.org/0000000308040835</orcidid><orcidid>https://orcid.org/0000000317688414</orcidid><orcidid>https://orcid.org/000000021633238X</orcidid></search><sort><creationdate>20190121</creationdate><title>Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)</title><author>Walker, Christopher C. ; Genzer, Jan ; Santiso, Erik E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e3f62894e3d258db0cb97092faaca7b6ab54044aa53bb977bb51664209de1e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohol</topic><topic>Atacticity</topic><topic>Coarsening</topic><topic>Computer simulation</topic><topic>Equations of state</topic><topic>Granulation</topic><topic>Liquid-vapor equilibrium</topic><topic>Molecular dynamics</topic><topic>Monomers</topic><topic>Polyethylenes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Christopher C.</creatorcontrib><creatorcontrib>Genzer, Jan</creatorcontrib><creatorcontrib>Santiso, Erik E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Christopher C.</au><au>Genzer, Jan</au><au>Santiso, Erik E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-21</date><risdate>2019</risdate><volume>150</volume><issue>3</issue><spage>034901</spage><epage>034901</epage><pages>034901-034901</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>SAFT-γ Mie, a group-contribution equation of state rooted in Statistical Associating Fluid Theory, provides an efficient framework for developing accurate, transferable coarse-grained force fields for molecular simulation. Building on the success of SAFT-γ Mie force fields for small molecules, we address two key issues in extending the SAFT-γ Mie coarse-graining methodology to polymers: (1) the treatment of polymer chain rigidity and (2) the disparity between the structure of linear chains of tangent spheres and the structure of the real polymers. We use Boltzmann inversion to derive effective bond-stretching and angle-bending potentials mapped from all-atom oligomer molecular dynamics (MD) simulations to the coarse-grained sites and a fused-sphere version of SAFT-γ Mie as the basis for non-bonded interactions. The introduction of an overlap parameter between Mie spheres leads to a degeneracy when fitting to monomer vapor-liquid equilibria (VLE) data, which we resolve by matching polymer density from coarse-grained MD simulation with that from all-atom simulation. The result is a chain of monomers rigorously parameterized to experimental VLE data and with structural detail consistent with all-atom simulations. We test our approach on atactic poly(vinyl alcohol) and polyethylene and compare the results for SAFT-γ Mie models with structural detail mapped from the Optimized Potentials for Liquid Simulations (OPLS) and Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) all-atom force fields.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30660157</pmid><doi>10.1063/1.5078742</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0804-0835</orcidid><orcidid>https://orcid.org/0000-0002-1633-238X</orcidid><orcidid>https://orcid.org/0000-0003-1768-8414</orcidid><orcidid>https://orcid.org/0000000308040835</orcidid><orcidid>https://orcid.org/0000000317688414</orcidid><orcidid>https://orcid.org/000000021633238X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (3), p.034901-034901
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_30660157
source AIP Journals Complete; Alma/SFX Local Collection
subjects Alcohol
Atacticity
Coarsening
Computer simulation
Equations of state
Granulation
Liquid-vapor equilibrium
Molecular dynamics
Monomers
Polyethylenes
Simulation
title Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20fused-sphere%20SAFT-%CE%B3%20Mie%20force%20field%20for%20poly(vinyl%20alcohol)%20and%20poly(ethylene)&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Walker,%20Christopher%20C.&rft.date=2019-01-21&rft.volume=150&rft.issue=3&rft.spage=034901&rft.epage=034901&rft.pages=034901-034901&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5078742&rft_dat=%3Cproquest_pubme%3E2179410211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167495150&rft_id=info:pmid/30660157&rfr_iscdi=true