Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval

This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-04, Vol.28 (4), p.1993-2007
Hauptverfasser: Wu, Gengshen, Han, Jungong, Guo, Yuchen, Liu, Li, Ding, Guiguang, Ni, Qiang, Shao, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 4
container_start_page 1993
container_title IEEE transactions on image processing
container_volume 28
creator Wu, Gengshen
Han, Jungong
Guo, Yuchen
Liu, Li
Ding, Guiguang
Ni, Qiang
Shao, Ling
description This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications.
doi_str_mv 10.1109/TIP.2018.2882155
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_30452370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540456</ieee_id><sourcerecordid>2136068454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-881f78b1a5c22452933049854abdca1512060a35ac7c08fdb9e273dc0094ccd23</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRrFbvgiABL15SZ1_J7lHro4WCr9Zr2G4mNSVt4m5T8L93S2sPnmZgvhl-8xFyQaFHKejb8fC1x4CqHlOKUSkPyAnVgsYAgh2GHmQap1ToDjn1fg5AhaTJMelwEJLxFE7I22Tp2wbduvSYRw-ITfRZ5lhHA-O_yuUsWpcmujeVWdow79c5RkXtopFxM4w_rKlwx7_jypW4NtUZOSpM5fF8V7tk8vQ47g_i0cvzsH83ii1XehUrRYtUTamRlrGQRvMQSispzDS3hkrKIAHDpbGpBVXkU40s5bkF0MLanPEuudnebVz93aJfZYvSW6xCVKxbnzHKE0iUkCKg1__Qed26ZUgXKJlqSEWyoWBLWVd777DIGlcujPvJKGQb3VnQnW10ZzvdYeVqd7idLjDfL_z5DcDlFigRcT8OXwYg4b9TeYD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157907464</pqid></control><display><type>article</type><title>Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Gengshen ; Han, Jungong ; Guo, Yuchen ; Liu, Li ; Ding, Guiguang ; Ni, Qiang ; Shao, Ling</creator><creatorcontrib>Wu, Gengshen ; Han, Jungong ; Guo, Yuchen ; Liu, Li ; Ding, Guiguang ; Ni, Qiang ; Shao, Ling</creatorcontrib><description>This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2882155</identifier><identifier>PMID: 30452370</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>balanced rotation ; Binary codes ; Clustering ; deep learning ; Feature extraction ; feature representation ; Hamming distance ; Nickel ; Optimization ; Quantization (signal) ; similarity retrieval ; Training ; Video hashing</subject><ispartof>IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1993-2007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-881f78b1a5c22452933049854abdca1512060a35ac7c08fdb9e273dc0094ccd23</citedby><cites>FETCH-LOGICAL-c389t-881f78b1a5c22452933049854abdca1512060a35ac7c08fdb9e273dc0094ccd23</cites><orcidid>0000-0002-4593-1656 ; 0000-0002-8264-6117 ; 0000-0001-9808-9805 ; 0000-0003-4361-956X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8540456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30452370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Gengshen</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><creatorcontrib>Guo, Yuchen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Ding, Guiguang</creatorcontrib><creatorcontrib>Ni, Qiang</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><title>Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications.</description><subject>balanced rotation</subject><subject>Binary codes</subject><subject>Clustering</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>feature representation</subject><subject>Hamming distance</subject><subject>Nickel</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>similarity retrieval</subject><subject>Training</subject><subject>Video hashing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQhxdRrFbvgiABL15SZ1_J7lHro4WCr9Zr2G4mNSVt4m5T8L93S2sPnmZgvhl-8xFyQaFHKejb8fC1x4CqHlOKUSkPyAnVgsYAgh2GHmQap1ToDjn1fg5AhaTJMelwEJLxFE7I22Tp2wbduvSYRw-ITfRZ5lhHA-O_yuUsWpcmujeVWdow79c5RkXtopFxM4w_rKlwx7_jypW4NtUZOSpM5fF8V7tk8vQ47g_i0cvzsH83ii1XehUrRYtUTamRlrGQRvMQSispzDS3hkrKIAHDpbGpBVXkU40s5bkF0MLanPEuudnebVz93aJfZYvSW6xCVKxbnzHKE0iUkCKg1__Qed26ZUgXKJlqSEWyoWBLWVd777DIGlcujPvJKGQb3VnQnW10ZzvdYeVqd7idLjDfL_z5DcDlFigRcT8OXwYg4b9TeYD1</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wu, Gengshen</creator><creator>Han, Jungong</creator><creator>Guo, Yuchen</creator><creator>Liu, Li</creator><creator>Ding, Guiguang</creator><creator>Ni, Qiang</creator><creator>Shao, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0001-9808-9805</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid></search><sort><creationdate>20190401</creationdate><title>Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval</title><author>Wu, Gengshen ; Han, Jungong ; Guo, Yuchen ; Liu, Li ; Ding, Guiguang ; Ni, Qiang ; Shao, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-881f78b1a5c22452933049854abdca1512060a35ac7c08fdb9e273dc0094ccd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>balanced rotation</topic><topic>Binary codes</topic><topic>Clustering</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>feature representation</topic><topic>Hamming distance</topic><topic>Nickel</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>similarity retrieval</topic><topic>Training</topic><topic>Video hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gengshen</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><creatorcontrib>Guo, Yuchen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Ding, Guiguang</creatorcontrib><creatorcontrib>Ni, Qiang</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Gengshen</au><au>Han, Jungong</au><au>Guo, Yuchen</au><au>Liu, Li</au><au>Ding, Guiguang</au><au>Ni, Qiang</au><au>Shao, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>28</volume><issue>4</issue><spage>1993</spage><epage>2007</epage><pages>1993-2007</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30452370</pmid><doi>10.1109/TIP.2018.2882155</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0001-9808-9805</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-04, Vol.28 (4), p.1993-2007
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_30452370
source IEEE Electronic Library (IEL)
subjects balanced rotation
Binary codes
Clustering
deep learning
Feature extraction
feature representation
Hamming distance
Nickel
Optimization
Quantization (signal)
similarity retrieval
Training
Video hashing
title Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Deep%20Video%20Hashing%20via%20Balanced%20Code%20for%20Large-Scale%20Video%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wu,%20Gengshen&rft.date=2019-04-01&rft.volume=28&rft.issue=4&rft.spage=1993&rft.epage=2007&rft.pages=1993-2007&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2882155&rft_dat=%3Cproquest_RIE%3E2136068454%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157907464&rft_id=info:pmid/30452370&rft_ieee_id=8540456&rfr_iscdi=true