Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection
Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injec...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-10, Vol.89 (10), p.105106-105106 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105106 |
---|---|
container_issue | 10 |
container_start_page | 105106 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Armstrong, D. J. Looker, Q. M. Stahoviak, J. W. Smith, I. C. Shores, J. E. Rambo, P. K. Schwarz, J. Speas, C. S. Porter, J. L. |
description | Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia’s Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30–50 ns margin of safety by blocking a pulse from leaving ZBL’s regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety. |
doi_str_mv | 10.1063/1.5051125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30399920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130800245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b95bfacf7d44aac79f8f11408bc09038567055cf5ab1dab9530aa473859ad9903</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agil1rD_0HJOilFqa-TJLN5FhKtS0FPejFS8jkBzt1ZrImM8L-9751ty1UaC4vkA8vL_kScszgjMGSf2JnEiRjtXxBFgwaXallzV-SBQAX1VKJ5oC8KeUOcCF7TQ44cK11DQvy89vKlkCH5OfeTl0aabRdX2wMtGzKFAYaU6bD3E9d9euG9ohzoS0WTxGn9dQ529NVmEJOfjMG6nHrtp3eklfR9iUc7esh-fH58vvFVXX79cv1xflt5biCqWq1bKN1UXkhrHVKxyYyJqBpHWjgjVwqkNJFaVvmLWoO1gqFB9p6jeKQvN_1TWXqTHEd3r9yaRxxDMOEUqJWiE52aJ3T7zmUyQxdcaHv7RjSXEzNODQAtZBIPzyhd2nOIz4BFVOywT_UqD7ulMuplByiWedusHljGJhtKoaZfSpo3-07zu0Q_IO8jwHB6Q5sp_8Xw4P5k_JjJ7P28Tn8_9V_AdqHoek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117585119</pqid></control><display><type>article</type><title>Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Armstrong, D. J. ; Looker, Q. M. ; Stahoviak, J. W. ; Smith, I. C. ; Shores, J. E. ; Rambo, P. K. ; Schwarz, J. ; Speas, C. S. ; Porter, J. L.</creator><creatorcontrib>Armstrong, D. J. ; Looker, Q. M. ; Stahoviak, J. W. ; Smith, I. C. ; Shores, J. E. ; Rambo, P. K. ; Schwarz, J. ; Speas, C. S. ; Porter, J. L. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia’s Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30–50 ns margin of safety by blocking a pulse from leaving ZBL’s regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5051125</identifier><identifier>PMID: 30399920</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplification ; Amplifiers ; Fail safe systems ; Failure ; Frequency spectrum ; Inertial fusion (reactor) ; Laser beams ; Lasers ; OTHER INSTRUMENTATION ; Phase modulation ; Response time ; Safety ; Scientific apparatus & instruments ; Sidebands</subject><ispartof>Review of scientific instruments, 2018-10, Vol.89 (10), p.105106-105106</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-b95bfacf7d44aac79f8f11408bc09038567055cf5ab1dab9530aa473859ad9903</cites><orcidid>0000-0001-6123-4327 ; 0000000161234327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5051125$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30399920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1477427$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, D. J.</creatorcontrib><creatorcontrib>Looker, Q. M.</creatorcontrib><creatorcontrib>Stahoviak, J. W.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Shores, J. E.</creatorcontrib><creatorcontrib>Rambo, P. K.</creatorcontrib><creatorcontrib>Schwarz, J.</creatorcontrib><creatorcontrib>Speas, C. S.</creatorcontrib><creatorcontrib>Porter, J. L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia’s Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30–50 ns margin of safety by blocking a pulse from leaving ZBL’s regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.</description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Fail safe systems</subject><subject>Failure</subject><subject>Frequency spectrum</subject><subject>Inertial fusion (reactor)</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>OTHER INSTRUMENTATION</subject><subject>Phase modulation</subject><subject>Response time</subject><subject>Safety</subject><subject>Scientific apparatus & instruments</subject><subject>Sidebands</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_Agil1rD_0HJOilFqa-TJLN5FhKtS0FPejFS8jkBzt1ZrImM8L-9751ty1UaC4vkA8vL_kScszgjMGSf2JnEiRjtXxBFgwaXallzV-SBQAX1VKJ5oC8KeUOcCF7TQ44cK11DQvy89vKlkCH5OfeTl0aabRdX2wMtGzKFAYaU6bD3E9d9euG9ohzoS0WTxGn9dQ529NVmEJOfjMG6nHrtp3eklfR9iUc7esh-fH58vvFVXX79cv1xflt5biCqWq1bKN1UXkhrHVKxyYyJqBpHWjgjVwqkNJFaVvmLWoO1gqFB9p6jeKQvN_1TWXqTHEd3r9yaRxxDMOEUqJWiE52aJ3T7zmUyQxdcaHv7RjSXEzNODQAtZBIPzyhd2nOIz4BFVOywT_UqD7ulMuplByiWedusHljGJhtKoaZfSpo3-07zu0Q_IO8jwHB6Q5sp_8Xw4P5k_JjJ7P28Tn8_9V_AdqHoek</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Armstrong, D. J.</creator><creator>Looker, Q. M.</creator><creator>Stahoviak, J. W.</creator><creator>Smith, I. C.</creator><creator>Shores, J. E.</creator><creator>Rambo, P. K.</creator><creator>Schwarz, J.</creator><creator>Speas, C. S.</creator><creator>Porter, J. L.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6123-4327</orcidid><orcidid>https://orcid.org/0000000161234327</orcidid></search><sort><creationdate>20181001</creationdate><title>Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection</title><author>Armstrong, D. J. ; Looker, Q. M. ; Stahoviak, J. W. ; Smith, I. C. ; Shores, J. E. ; Rambo, P. K. ; Schwarz, J. ; Speas, C. S. ; Porter, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b95bfacf7d44aac79f8f11408bc09038567055cf5ab1dab9530aa473859ad9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Fail safe systems</topic><topic>Failure</topic><topic>Frequency spectrum</topic><topic>Inertial fusion (reactor)</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>OTHER INSTRUMENTATION</topic><topic>Phase modulation</topic><topic>Response time</topic><topic>Safety</topic><topic>Scientific apparatus & instruments</topic><topic>Sidebands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, D. J.</creatorcontrib><creatorcontrib>Looker, Q. M.</creatorcontrib><creatorcontrib>Stahoviak, J. W.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Shores, J. E.</creatorcontrib><creatorcontrib>Rambo, P. K.</creatorcontrib><creatorcontrib>Schwarz, J.</creatorcontrib><creatorcontrib>Speas, C. S.</creatorcontrib><creatorcontrib>Porter, J. L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, D. J.</au><au>Looker, Q. M.</au><au>Stahoviak, J. W.</au><au>Smith, I. C.</au><au>Shores, J. E.</au><au>Rambo, P. K.</au><au>Schwarz, J.</au><au>Speas, C. S.</au><au>Porter, J. L.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>89</volume><issue>10</issue><spage>105106</spage><epage>105106</epage><pages>105106-105106</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index β can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia’s Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30–50 ns margin of safety by blocking a pulse from leaving ZBL’s regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30399920</pmid><doi>10.1063/1.5051125</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6123-4327</orcidid><orcidid>https://orcid.org/0000000161234327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-10, Vol.89 (10), p.105106-105106 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_30399920 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Amplification Amplifiers Fail safe systems Failure Frequency spectrum Inertial fusion (reactor) Laser beams Lasers OTHER INSTRUMENTATION Phase modulation Response time Safety Scientific apparatus & instruments Sidebands |
title | Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20modulation%20failsafe%20system%20for%20multi-kJ%20lasers%20based%20on%20optical%20heterodyne%20detection&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Armstrong,%20D.%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-10-01&rft.volume=89&rft.issue=10&rft.spage=105106&rft.epage=105106&rft.pages=105106-105106&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5051125&rft_dat=%3Cproquest_pubme%3E2130800245%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117585119&rft_id=info:pmid/30399920&rfr_iscdi=true |