Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy
The electronic band gap, i.e. the energy difference between the top of the valence band and the bottom of the conduction band, is widely recognized as the key property characterizing the electronic structure of bulk liquids and liquid solvents like water or ammonia. Here, the band gap of liquid ammo...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-10, Vol.2 (4), p.25657-25665 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25665 |
---|---|
container_issue | 4 |
container_start_page | 25657 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Vogler, Tim Vöhringer, Peter |
description | The electronic band gap,
i.e.
the energy difference between the top of the valence band and the bottom of the conduction band, is widely recognized as the key property characterizing the electronic structure of bulk liquids and liquid solvents like water or ammonia. Here, the band gap of liquid ammonia at 270 K and 300 bar was studied with 2-photon ionization spectroscopy using the solvated electron primary yield as a near-infrared action-spectroscopic probe. The experimentally determined escape probability, which is the fraction of solvated electrons that is able to avoid geminate recombination within the first nanosecond after ionization, was used to extract a value of −(1.27 ± 0.03) eV for the vertical electron affinity of the liquid.
The solvated electron primary yield is used in a multiphoton-ionization action-spectroscopic experiment to explore the band gap of liquid ammonia. |
doi_str_mv | 10.1039/c8cp05030a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30289420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116852182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-55941208b1447f494cdcd1255af339a7551d7d8b374ea7c5441cbe4c6fb17f293</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan626XEUf8HAHfTkoaRpumW0TdekyPzrjW5O8PQe5MPj5fsAOMfoFiOa3imhOsQRRfIAjDGLaZQiwQ73fRKPwIlzK4QQ5pgegxFFRKSMoDF4n_e2MO0C-qWGhWxLuJAdtBWszXowJZRNY1sj4YfxS1jpxlunlQ2sGWpvuqX1toUmkE_pQ4Gu08r31inbbU7BUSVrp892dQLeHu5fs6do9vL4nE1nkWKY-4jzlGGCRIEZSyqWMlWqEhPOZUVpKhPOcZmUoqAJ0zJRnDGsCs1UXBU4qUhKJ-B6O7fr7XrQzueNcUrXtWy1HVxOMI4FJ1iQQK_-0ZUd-jZsFxRBSZBIBHWzVSr8xPW6yrveNLLf5Bjl35HnmcjmP5FPA77cjRyKRpd7-ptxABdb0Du1f_27Gf0CwmKFiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120711608</pqid></control><display><type>article</type><title>Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Vogler, Tim ; Vöhringer, Peter</creator><creatorcontrib>Vogler, Tim ; Vöhringer, Peter</creatorcontrib><description>The electronic band gap,
i.e.
the energy difference between the top of the valence band and the bottom of the conduction band, is widely recognized as the key property characterizing the electronic structure of bulk liquids and liquid solvents like water or ammonia. Here, the band gap of liquid ammonia at 270 K and 300 bar was studied with 2-photon ionization spectroscopy using the solvated electron primary yield as a near-infrared action-spectroscopic probe. The experimentally determined escape probability, which is the fraction of solvated electrons that is able to avoid geminate recombination within the first nanosecond after ionization, was used to extract a value of −(1.27 ± 0.03) eV for the vertical electron affinity of the liquid.
The solvated electron primary yield is used in a multiphoton-ionization action-spectroscopic experiment to explore the band gap of liquid ammonia.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05030a</identifier><identifier>PMID: 30289420</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ammonia ; Band gap ; Conduction bands ; Electron affinity ; Electronic structure ; Energy gap ; Ionization ; Liquid ammonia ; Near infrared radiation ; Spectrum analysis ; Valence band</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (4), p.25657-25665</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-55941208b1447f494cdcd1255af339a7551d7d8b374ea7c5441cbe4c6fb17f293</citedby><cites>FETCH-LOGICAL-c415t-55941208b1447f494cdcd1255af339a7551d7d8b374ea7c5441cbe4c6fb17f293</cites><orcidid>0000-0003-3098-0428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30289420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogler, Tim</creatorcontrib><creatorcontrib>Vöhringer, Peter</creatorcontrib><title>Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The electronic band gap,
i.e.
the energy difference between the top of the valence band and the bottom of the conduction band, is widely recognized as the key property characterizing the electronic structure of bulk liquids and liquid solvents like water or ammonia. Here, the band gap of liquid ammonia at 270 K and 300 bar was studied with 2-photon ionization spectroscopy using the solvated electron primary yield as a near-infrared action-spectroscopic probe. The experimentally determined escape probability, which is the fraction of solvated electrons that is able to avoid geminate recombination within the first nanosecond after ionization, was used to extract a value of −(1.27 ± 0.03) eV for the vertical electron affinity of the liquid.
The solvated electron primary yield is used in a multiphoton-ionization action-spectroscopic experiment to explore the band gap of liquid ammonia.</description><subject>Ammonia</subject><subject>Band gap</subject><subject>Conduction bands</subject><subject>Electron affinity</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Ionization</subject><subject>Liquid ammonia</subject><subject>Near infrared radiation</subject><subject>Spectrum analysis</subject><subject>Valence band</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan626XEUf8HAHfTkoaRpumW0TdekyPzrjW5O8PQe5MPj5fsAOMfoFiOa3imhOsQRRfIAjDGLaZQiwQ73fRKPwIlzK4QQ5pgegxFFRKSMoDF4n_e2MO0C-qWGhWxLuJAdtBWszXowJZRNY1sj4YfxS1jpxlunlQ2sGWpvuqX1toUmkE_pQ4Gu08r31inbbU7BUSVrp892dQLeHu5fs6do9vL4nE1nkWKY-4jzlGGCRIEZSyqWMlWqEhPOZUVpKhPOcZmUoqAJ0zJRnDGsCs1UXBU4qUhKJ-B6O7fr7XrQzueNcUrXtWy1HVxOMI4FJ1iQQK_-0ZUd-jZsFxRBSZBIBHWzVSr8xPW6yrveNLLf5Bjl35HnmcjmP5FPA77cjRyKRpd7-ptxABdb0Du1f_27Gf0CwmKFiQ</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Vogler, Tim</creator><creator>Vöhringer, Peter</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3098-0428</orcidid></search><sort><creationdate>20181017</creationdate><title>Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy</title><author>Vogler, Tim ; Vöhringer, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-55941208b1447f494cdcd1255af339a7551d7d8b374ea7c5441cbe4c6fb17f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Band gap</topic><topic>Conduction bands</topic><topic>Electron affinity</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Ionization</topic><topic>Liquid ammonia</topic><topic>Near infrared radiation</topic><topic>Spectrum analysis</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogler, Tim</creatorcontrib><creatorcontrib>Vöhringer, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogler, Tim</au><au>Vöhringer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-10-17</date><risdate>2018</risdate><volume>2</volume><issue>4</issue><spage>25657</spage><epage>25665</epage><pages>25657-25665</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The electronic band gap,
i.e.
the energy difference between the top of the valence band and the bottom of the conduction band, is widely recognized as the key property characterizing the electronic structure of bulk liquids and liquid solvents like water or ammonia. Here, the band gap of liquid ammonia at 270 K and 300 bar was studied with 2-photon ionization spectroscopy using the solvated electron primary yield as a near-infrared action-spectroscopic probe. The experimentally determined escape probability, which is the fraction of solvated electrons that is able to avoid geminate recombination within the first nanosecond after ionization, was used to extract a value of −(1.27 ± 0.03) eV for the vertical electron affinity of the liquid.
The solvated electron primary yield is used in a multiphoton-ionization action-spectroscopic experiment to explore the band gap of liquid ammonia.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30289420</pmid><doi>10.1039/c8cp05030a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3098-0428</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (4), p.25657-25665 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_30289420 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Ammonia Band gap Conduction bands Electron affinity Electronic structure Energy gap Ionization Liquid ammonia Near infrared radiation Spectrum analysis Valence band |
title | Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20band%20gap%20of%20liquid%20ammonia%20with%20femtosecond%20multiphoton%20ionization%20spectroscopy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Vogler,%20Tim&rft.date=2018-10-17&rft.volume=2&rft.issue=4&rft.spage=25657&rft.epage=25665&rft.pages=25657-25665&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05030a&rft_dat=%3Cproquest_pubme%3E2116852182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120711608&rft_id=info:pmid/30289420&rfr_iscdi=true |