Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations

In this paper, manganese carbide (MnC) and niobium carbide (NbC) are predicted as stable monolayer metallic materials, whose Young's moduli are 50.06 N m −1 and 44.07 N m −1 , respectively. The ab initio molecular dynamics (AIMD) results show that both MnC and NbC could hold their structure up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-10, Vol.2 (39), p.25437-25445
Hauptverfasser: Zhang, Bingwen, Huang, Yina, Bao, Weicheng, Wang, Baolin, Meng, Qiangqiang, Fan, Lele, Zhang, Qinfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25445
container_issue 39
container_start_page 25437
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Zhang, Bingwen
Huang, Yina
Bao, Weicheng
Wang, Baolin
Meng, Qiangqiang
Fan, Lele
Zhang, Qinfang
description In this paper, manganese carbide (MnC) and niobium carbide (NbC) are predicted as stable monolayer metallic materials, whose Young's moduli are 50.06 N m −1 and 44.07 N m −1 , respectively. The ab initio molecular dynamics (AIMD) results show that both MnC and NbC could hold their structure up to 1000 K, showing favorable thermal properties. These monolayers also show good properties for promising application in Li ion batteries because of their high specific capacities and low diffusion barriers. The MnC monolayer is ferromagnetic and the Curie temperature simulated by the Monte-Carlo method is about 205 K. The electronic band of MnC shows a metal to half-metal transition by passivation of Cl or Br atoms, and the functionalization methods also cause the metallic NbC monolayer to exhibit the quantum spin Hall effect (QSHE). These novel transition metal carbide monolayers hold great promise for 2D spintronic and electronic device applications. MnC and NbC monolayers are predicted to be stable and promising for Li-ion battery, by functionalization, they exhibit half-metallic property and quantum spin Hall effect, respectively.
doi_str_mv 10.1039/c8cp04541k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30272085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117441675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-232e9d85c7daf5c986813775abf589726a9c9589b2f59d3782d084d127a490b53</originalsourceid><addsrcrecordid>eNpdkUlPwzAUhC0EgrJcuIMscSlIAS9xbB9RxCbWQzlHju2I0CzFTqjg1-O0pUic3mjep9GzB4BDjM4xovJCCz1DMYvxdAOMcJzQSCIRb641T3bArvfvCCHMMN0GOxQRTpBgIzCdzNvIlLVtfNk2qoK-U3llYedUcLrgwdp2wdfK5aWxHo4fmxSqxsCnPD2F87J7gzNnTakX8LBo2k9bwaJvFpaqym81CL8PtgpVeXuwmnvg9fpqkt5GD883d-nlQ6Qpj7uIUGKlEUxzowqmpUgEppwzlRdMSE4SJbUMKicFk4ZyQUx4rsGEq1iinNE9MF7mzlz70VvfZXXpta0q1di29xnBmBGOMcEBPfmHvre9CzcvKB7HOOFD4NmS0q713tkim7myVu4rwygbKshSkb4sKrgP8PEqss9ra9bo758H4GgJOK_X278O6Q96SYpJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117441675</pqid></control><display><type>article</type><title>Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Bingwen ; Huang, Yina ; Bao, Weicheng ; Wang, Baolin ; Meng, Qiangqiang ; Fan, Lele ; Zhang, Qinfang</creator><creatorcontrib>Zhang, Bingwen ; Huang, Yina ; Bao, Weicheng ; Wang, Baolin ; Meng, Qiangqiang ; Fan, Lele ; Zhang, Qinfang</creatorcontrib><description>In this paper, manganese carbide (MnC) and niobium carbide (NbC) are predicted as stable monolayer metallic materials, whose Young's moduli are 50.06 N m −1 and 44.07 N m −1 , respectively. The ab initio molecular dynamics (AIMD) results show that both MnC and NbC could hold their structure up to 1000 K, showing favorable thermal properties. These monolayers also show good properties for promising application in Li ion batteries because of their high specific capacities and low diffusion barriers. The MnC monolayer is ferromagnetic and the Curie temperature simulated by the Monte-Carlo method is about 205 K. The electronic band of MnC shows a metal to half-metal transition by passivation of Cl or Br atoms, and the functionalization methods also cause the metallic NbC monolayer to exhibit the quantum spin Hall effect (QSHE). These novel transition metal carbide monolayers hold great promise for 2D spintronic and electronic device applications. MnC and NbC monolayers are predicted to be stable and promising for Li-ion battery, by functionalization, they exhibit half-metallic property and quantum spin Hall effect, respectively.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp04541k</identifier><identifier>PMID: 30272085</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Batteries ; Computer simulation ; Curie temperature ; Diffusion barriers ; Dimensional stability ; Ferromagnetism ; Manganese ; Metal carbides ; Modulus of elasticity ; Molecular dynamics ; Monolayers ; Monte Carlo simulation ; Niobium carbide ; Predictions ; Quantum Hall effect ; Thermodynamic properties ; Transition metals</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (39), p.25437-25445</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-232e9d85c7daf5c986813775abf589726a9c9589b2f59d3782d084d127a490b53</citedby><cites>FETCH-LOGICAL-c374t-232e9d85c7daf5c986813775abf589726a9c9589b2f59d3782d084d127a490b53</cites><orcidid>0000-0002-1655-2083 ; 0000-0002-3465-8332 ; 0000-0003-3233-3400 ; 0000-0002-5255-2312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30272085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bingwen</creatorcontrib><creatorcontrib>Huang, Yina</creatorcontrib><creatorcontrib>Bao, Weicheng</creatorcontrib><creatorcontrib>Wang, Baolin</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Fan, Lele</creatorcontrib><creatorcontrib>Zhang, Qinfang</creatorcontrib><title>Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In this paper, manganese carbide (MnC) and niobium carbide (NbC) are predicted as stable monolayer metallic materials, whose Young's moduli are 50.06 N m −1 and 44.07 N m −1 , respectively. The ab initio molecular dynamics (AIMD) results show that both MnC and NbC could hold their structure up to 1000 K, showing favorable thermal properties. These monolayers also show good properties for promising application in Li ion batteries because of their high specific capacities and low diffusion barriers. The MnC monolayer is ferromagnetic and the Curie temperature simulated by the Monte-Carlo method is about 205 K. The electronic band of MnC shows a metal to half-metal transition by passivation of Cl or Br atoms, and the functionalization methods also cause the metallic NbC monolayer to exhibit the quantum spin Hall effect (QSHE). These novel transition metal carbide monolayers hold great promise for 2D spintronic and electronic device applications. MnC and NbC monolayers are predicted to be stable and promising for Li-ion battery, by functionalization, they exhibit half-metallic property and quantum spin Hall effect, respectively.</description><subject>Batteries</subject><subject>Computer simulation</subject><subject>Curie temperature</subject><subject>Diffusion barriers</subject><subject>Dimensional stability</subject><subject>Ferromagnetism</subject><subject>Manganese</subject><subject>Metal carbides</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Monolayers</subject><subject>Monte Carlo simulation</subject><subject>Niobium carbide</subject><subject>Predictions</subject><subject>Quantum Hall effect</subject><subject>Thermodynamic properties</subject><subject>Transition metals</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAUhC0EgrJcuIMscSlIAS9xbB9RxCbWQzlHju2I0CzFTqjg1-O0pUic3mjep9GzB4BDjM4xovJCCz1DMYvxdAOMcJzQSCIRb641T3bArvfvCCHMMN0GOxQRTpBgIzCdzNvIlLVtfNk2qoK-U3llYedUcLrgwdp2wdfK5aWxHo4fmxSqxsCnPD2F87J7gzNnTakX8LBo2k9bwaJvFpaqym81CL8PtgpVeXuwmnvg9fpqkt5GD883d-nlQ6Qpj7uIUGKlEUxzowqmpUgEppwzlRdMSE4SJbUMKicFk4ZyQUx4rsGEq1iinNE9MF7mzlz70VvfZXXpta0q1di29xnBmBGOMcEBPfmHvre9CzcvKB7HOOFD4NmS0q713tkim7myVu4rwygbKshSkb4sKrgP8PEqss9ra9bo758H4GgJOK_X278O6Q96SYpJ</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Zhang, Bingwen</creator><creator>Huang, Yina</creator><creator>Bao, Weicheng</creator><creator>Wang, Baolin</creator><creator>Meng, Qiangqiang</creator><creator>Fan, Lele</creator><creator>Zhang, Qinfang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1655-2083</orcidid><orcidid>https://orcid.org/0000-0002-3465-8332</orcidid><orcidid>https://orcid.org/0000-0003-3233-3400</orcidid><orcidid>https://orcid.org/0000-0002-5255-2312</orcidid></search><sort><creationdate>20181010</creationdate><title>Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations</title><author>Zhang, Bingwen ; Huang, Yina ; Bao, Weicheng ; Wang, Baolin ; Meng, Qiangqiang ; Fan, Lele ; Zhang, Qinfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-232e9d85c7daf5c986813775abf589726a9c9589b2f59d3782d084d127a490b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Computer simulation</topic><topic>Curie temperature</topic><topic>Diffusion barriers</topic><topic>Dimensional stability</topic><topic>Ferromagnetism</topic><topic>Manganese</topic><topic>Metal carbides</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Monolayers</topic><topic>Monte Carlo simulation</topic><topic>Niobium carbide</topic><topic>Predictions</topic><topic>Quantum Hall effect</topic><topic>Thermodynamic properties</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bingwen</creatorcontrib><creatorcontrib>Huang, Yina</creatorcontrib><creatorcontrib>Bao, Weicheng</creatorcontrib><creatorcontrib>Wang, Baolin</creatorcontrib><creatorcontrib>Meng, Qiangqiang</creatorcontrib><creatorcontrib>Fan, Lele</creatorcontrib><creatorcontrib>Zhang, Qinfang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bingwen</au><au>Huang, Yina</au><au>Bao, Weicheng</au><au>Wang, Baolin</au><au>Meng, Qiangqiang</au><au>Fan, Lele</au><au>Zhang, Qinfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>2</volume><issue>39</issue><spage>25437</spage><epage>25445</epage><pages>25437-25445</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In this paper, manganese carbide (MnC) and niobium carbide (NbC) are predicted as stable monolayer metallic materials, whose Young's moduli are 50.06 N m −1 and 44.07 N m −1 , respectively. The ab initio molecular dynamics (AIMD) results show that both MnC and NbC could hold their structure up to 1000 K, showing favorable thermal properties. These monolayers also show good properties for promising application in Li ion batteries because of their high specific capacities and low diffusion barriers. The MnC monolayer is ferromagnetic and the Curie temperature simulated by the Monte-Carlo method is about 205 K. The electronic band of MnC shows a metal to half-metal transition by passivation of Cl or Br atoms, and the functionalization methods also cause the metallic NbC monolayer to exhibit the quantum spin Hall effect (QSHE). These novel transition metal carbide monolayers hold great promise for 2D spintronic and electronic device applications. MnC and NbC monolayers are predicted to be stable and promising for Li-ion battery, by functionalization, they exhibit half-metallic property and quantum spin Hall effect, respectively.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30272085</pmid><doi>10.1039/c8cp04541k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1655-2083</orcidid><orcidid>https://orcid.org/0000-0002-3465-8332</orcidid><orcidid>https://orcid.org/0000-0003-3233-3400</orcidid><orcidid>https://orcid.org/0000-0002-5255-2312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (39), p.25437-25445
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_30272085
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Batteries
Computer simulation
Curie temperature
Diffusion barriers
Dimensional stability
Ferromagnetism
Manganese
Metal carbides
Modulus of elasticity
Molecular dynamics
Monolayers
Monte Carlo simulation
Niobium carbide
Predictions
Quantum Hall effect
Thermodynamic properties
Transition metals
title Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20stable%20transition%20metal%20carbides%20(MnC%20and%20NbC)%20with%20prediction%20and%20novel%20functionalizations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zhang,%20Bingwen&rft.date=2018-10-10&rft.volume=2&rft.issue=39&rft.spage=25437&rft.epage=25445&rft.pages=25437-25445&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp04541k&rft_dat=%3Cproquest_pubme%3E2117441675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117441675&rft_id=info:pmid/30272085&rfr_iscdi=true