Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method
Anisotropic thermal properties are of both fundamental and practical interests, but remain challenging to characterize using conventional methods. In this work, a new metrology based on asymmetric beam time-domain thermoreflectance (AB-TDTR) is developed to measure three-dimensional anisotropic ther...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-08, Vol.89 (8), p.084901-084901 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084901 |
---|---|
container_issue | 8 |
container_start_page | 084901 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Li, Man Kang, Joon Sang Hu, Yongjie |
description | Anisotropic thermal properties are of both fundamental and practical interests, but remain challenging to characterize using conventional methods. In this work, a new metrology based on asymmetric beam time-domain thermoreflectance (AB-TDTR) is developed to measure three-dimensional anisotropic thermal transport by extending the conventional TDTR technique. Using an elliptical laser beam with controlled elliptical ratio and spot size, the experimental signals can be exploited to be dominantly sensitive to measure thermal conductivity along the cross-plane or any specific in-plane directions. An analytic solution for a multi-layer system is derived for the AB-TDTR signal in response to the periodical pulse, elliptical laser beam, and heating geometry to extract the anisotropic thermal conductivity from experimental measurement. Examples with experimental data are given for various materials with in-plane thermal conductivity from 5 W/m K to 2000 W/m K, including isotropic materials (silicon, boron phosphide, and boron nitride), transversely isotropic materials (graphite, quartz, and sapphire), and transversely anisotropic materials (black phosphorus). Furthermore, a detailed sensitivity analysis is conducted to guide the optimal setting of experimental configurations for different materials. The developed AB-TDTR metrology provides a new approach to accurately measure anisotropic thermal phenomena for rational materials design and thermal applications. |
doi_str_mv | 10.1063/1.5026028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30184688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100329861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-167201e4bba386e64a4344887c3e400d1aa7735e89e4530436dcd1e3a71e0d33</originalsourceid><addsrcrecordid>eNp90c9rFDEUwPEgil2rB_8BCXhphalJXjaTPW5bf0FBkLmHbOatTZkka5Jp2f_elF0VBM0llw9fkvcIec3ZBWcK3vOLJROKCf2ELDjTq65XAp6SBWMgO9VLfUJelHLH2lly_pycAONaKq0X5GEdfUk1p513tN5iDnaiLsVxdtXf-7qnAW2ZMwaMlc7Fx-_U0ogPdF32IWDN3nWXaAMdfMDuOgXrIx0eQynjdkJXbXRIz9aX3XA9fDtvvXqbxpfk2dZOBV8d71MyfPwwXH3ubr5--nK1vukcaKgdV71gHOVmY0ErVNJKkFLr3gFKxkZubd_DEvUK5RKYBDW6kSPYniMbAU7J2SG7y-nHjKWa4IvDabIR01yM4G1GYqUVb_TtX_QuzTm2xxnBtAImhOqbOj8ol1Mp7Ydml32weW84M4_LMNwcl9Hsm2Nx3gQcf8tf02_g3QEU56utPsX_1v6J71P-A81u3MJP6wifIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086302267</pqid></control><display><type>article</type><title>Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Man ; Kang, Joon Sang ; Hu, Yongjie</creator><creatorcontrib>Li, Man ; Kang, Joon Sang ; Hu, Yongjie</creatorcontrib><description>Anisotropic thermal properties are of both fundamental and practical interests, but remain challenging to characterize using conventional methods. In this work, a new metrology based on asymmetric beam time-domain thermoreflectance (AB-TDTR) is developed to measure three-dimensional anisotropic thermal transport by extending the conventional TDTR technique. Using an elliptical laser beam with controlled elliptical ratio and spot size, the experimental signals can be exploited to be dominantly sensitive to measure thermal conductivity along the cross-plane or any specific in-plane directions. An analytic solution for a multi-layer system is derived for the AB-TDTR signal in response to the periodical pulse, elliptical laser beam, and heating geometry to extract the anisotropic thermal conductivity from experimental measurement. Examples with experimental data are given for various materials with in-plane thermal conductivity from 5 W/m K to 2000 W/m K, including isotropic materials (silicon, boron phosphide, and boron nitride), transversely isotropic materials (graphite, quartz, and sapphire), and transversely anisotropic materials (black phosphorus). Furthermore, a detailed sensitivity analysis is conducted to guide the optimal setting of experimental configurations for different materials. The developed AB-TDTR metrology provides a new approach to accurately measure anisotropic thermal phenomena for rational materials design and thermal applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5026028</identifier><identifier>PMID: 30184688</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anisotropy ; Boron nitride ; Boron phosphides ; Heat conductivity ; Heat transfer ; Isotropic material ; Laser beam heating ; Metrology ; Multilayers ; Sapphire ; Scientific apparatus & instruments ; Sensitivity analysis ; Thermal conductivity ; Thermodynamic properties ; Time domain analysis</subject><ispartof>Review of scientific instruments, 2018-08, Vol.89 (8), p.084901-084901</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-167201e4bba386e64a4344887c3e400d1aa7735e89e4530436dcd1e3a71e0d33</citedby><cites>FETCH-LOGICAL-c383t-167201e4bba386e64a4344887c3e400d1aa7735e89e4530436dcd1e3a71e0d33</cites><orcidid>0000-0001-7225-1130 ; 0000000172251130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5026028$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30184688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Man</creatorcontrib><creatorcontrib>Kang, Joon Sang</creatorcontrib><creatorcontrib>Hu, Yongjie</creatorcontrib><title>Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Anisotropic thermal properties are of both fundamental and practical interests, but remain challenging to characterize using conventional methods. In this work, a new metrology based on asymmetric beam time-domain thermoreflectance (AB-TDTR) is developed to measure three-dimensional anisotropic thermal transport by extending the conventional TDTR technique. Using an elliptical laser beam with controlled elliptical ratio and spot size, the experimental signals can be exploited to be dominantly sensitive to measure thermal conductivity along the cross-plane or any specific in-plane directions. An analytic solution for a multi-layer system is derived for the AB-TDTR signal in response to the periodical pulse, elliptical laser beam, and heating geometry to extract the anisotropic thermal conductivity from experimental measurement. Examples with experimental data are given for various materials with in-plane thermal conductivity from 5 W/m K to 2000 W/m K, including isotropic materials (silicon, boron phosphide, and boron nitride), transversely isotropic materials (graphite, quartz, and sapphire), and transversely anisotropic materials (black phosphorus). Furthermore, a detailed sensitivity analysis is conducted to guide the optimal setting of experimental configurations for different materials. The developed AB-TDTR metrology provides a new approach to accurately measure anisotropic thermal phenomena for rational materials design and thermal applications.</description><subject>Anisotropy</subject><subject>Boron nitride</subject><subject>Boron phosphides</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Isotropic material</subject><subject>Laser beam heating</subject><subject>Metrology</subject><subject>Multilayers</subject><subject>Sapphire</subject><subject>Scientific apparatus & instruments</subject><subject>Sensitivity analysis</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Time domain analysis</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUwPEgil2rB_8BCXhphalJXjaTPW5bf0FBkLmHbOatTZkka5Jp2f_elF0VBM0llw9fkvcIec3ZBWcK3vOLJROKCf2ELDjTq65XAp6SBWMgO9VLfUJelHLH2lly_pycAONaKq0X5GEdfUk1p513tN5iDnaiLsVxdtXf-7qnAW2ZMwaMlc7Fx-_U0ogPdF32IWDN3nWXaAMdfMDuOgXrIx0eQynjdkJXbXRIz9aX3XA9fDtvvXqbxpfk2dZOBV8d71MyfPwwXH3ubr5--nK1vukcaKgdV71gHOVmY0ErVNJKkFLr3gFKxkZubd_DEvUK5RKYBDW6kSPYniMbAU7J2SG7y-nHjKWa4IvDabIR01yM4G1GYqUVb_TtX_QuzTm2xxnBtAImhOqbOj8ol1Mp7Ydml32weW84M4_LMNwcl9Hsm2Nx3gQcf8tf02_g3QEU56utPsX_1v6J71P-A81u3MJP6wifIg</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Li, Man</creator><creator>Kang, Joon Sang</creator><creator>Hu, Yongjie</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7225-1130</orcidid><orcidid>https://orcid.org/0000000172251130</orcidid></search><sort><creationdate>201808</creationdate><title>Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method</title><author>Li, Man ; Kang, Joon Sang ; Hu, Yongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-167201e4bba386e64a4344887c3e400d1aa7735e89e4530436dcd1e3a71e0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Boron nitride</topic><topic>Boron phosphides</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Isotropic material</topic><topic>Laser beam heating</topic><topic>Metrology</topic><topic>Multilayers</topic><topic>Sapphire</topic><topic>Scientific apparatus & instruments</topic><topic>Sensitivity analysis</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Man</creatorcontrib><creatorcontrib>Kang, Joon Sang</creatorcontrib><creatorcontrib>Hu, Yongjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Man</au><au>Kang, Joon Sang</au><au>Hu, Yongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-08</date><risdate>2018</risdate><volume>89</volume><issue>8</issue><spage>084901</spage><epage>084901</epage><pages>084901-084901</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Anisotropic thermal properties are of both fundamental and practical interests, but remain challenging to characterize using conventional methods. In this work, a new metrology based on asymmetric beam time-domain thermoreflectance (AB-TDTR) is developed to measure three-dimensional anisotropic thermal transport by extending the conventional TDTR technique. Using an elliptical laser beam with controlled elliptical ratio and spot size, the experimental signals can be exploited to be dominantly sensitive to measure thermal conductivity along the cross-plane or any specific in-plane directions. An analytic solution for a multi-layer system is derived for the AB-TDTR signal in response to the periodical pulse, elliptical laser beam, and heating geometry to extract the anisotropic thermal conductivity from experimental measurement. Examples with experimental data are given for various materials with in-plane thermal conductivity from 5 W/m K to 2000 W/m K, including isotropic materials (silicon, boron phosphide, and boron nitride), transversely isotropic materials (graphite, quartz, and sapphire), and transversely anisotropic materials (black phosphorus). Furthermore, a detailed sensitivity analysis is conducted to guide the optimal setting of experimental configurations for different materials. The developed AB-TDTR metrology provides a new approach to accurately measure anisotropic thermal phenomena for rational materials design and thermal applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30184688</pmid><doi>10.1063/1.5026028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7225-1130</orcidid><orcidid>https://orcid.org/0000000172251130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-08, Vol.89 (8), p.084901-084901 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_30184688 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Boron nitride Boron phosphides Heat conductivity Heat transfer Isotropic material Laser beam heating Metrology Multilayers Sapphire Scientific apparatus & instruments Sensitivity analysis Thermal conductivity Thermodynamic properties Time domain analysis |
title | Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20thermal%20conductivity%20measurement%20using%20a%20new%20Asymmetric-Beam%20Time-Domain%20Thermoreflectance%20(AB-TDTR)%20method&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Li,%20Man&rft.date=2018-08&rft.volume=89&rft.issue=8&rft.spage=084901&rft.epage=084901&rft.pages=084901-084901&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5026028&rft_dat=%3Cproquest_pubme%3E2100329861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086302267&rft_id=info:pmid/30184688&rfr_iscdi=true |