Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)

Here we propose the reweighted autoencoded variational Bayes for enhanced sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-08, Vol.149 (7), p.072301-072301
Hauptverfasser: Ribeiro, João Marcelo Lamim, Bravo, Pablo, Wang, Yihang, Tiwary, Pratyush
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 072301
container_issue 7
container_start_page 072301
container_title The Journal of chemical physics
container_volume 149
creator Ribeiro, João Marcelo Lamim
Bravo, Pablo
Wang, Yihang
Tiwary, Pratyush
description Here we propose the reweighted autoencoded variational Bayes for enhanced sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep learning in order to produce an increasingly accurate probability distribution along a low-dimensional latent space that captures the key features of the molecular simulation trajectory. Using the Kullback-Leibler divergence between this latent space distribution and the distribution of various trial reaction coordinates sampled from the molecular simulation, RAVE determines an optimum, yet nonetheless physically interpretable, reaction coordinate and optimum probability distribution. Both then directly serve as the biasing protocol for a new biased simulation, which is once again fed into the deep learning module with appropriate weights accounting for the bias, the procedure continuing until estimates of desirable thermodynamic observables are converged. Unlike recent methods using deep learning for enhanced sampling purposes, RAVE stands out in that (a) it naturally produces a physically interpretable reaction coordinate, (b) is independent of existing enhanced sampling protocols to enhance the fluctuations along the latent space identified via deep learning, and (c) it provides the ability to easily filter out spurious solutions learned by the deep learning procedure. The usefulness and reliability of RAVE is demonstrated by applying it to model potentials of increasing complexity, including computation of the binding free energy profile for a hydrophobic ligand–substrate system in explicit water with dissociation time of more than 3 min, in computer time at least twenty times less than that needed for umbrella sampling or metadynamics.
doi_str_mv 10.1063/1.5025487
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30134694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092544817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e463b5730a68af928688a831dbb76fa13ab6956ede496ae2430dc524777373353</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipvTg29AetyEzjw1D8c55gMMhKFeS9r-u1XaZibtZO_e6uY8CJ4SyIdf4IvQJcFjggW7IeMI04greYT6BCsdSqHxMepjTEmoBRY9dOb9G8aYSMpPUY9hwrjQvI9mC_iAYrlqIAtM21ioU5t1941xhWkKW5syuDVb8EFuXQD1ytRp9-xNtS6LehkMF5PX2egcneSm9HCxPwfo5W72PH0I50_3j9PJPEw5JU0IXLAkkgwboUyuqRJKGcVIliRS5IYwkwgdCciAa2GAcoazNKJcSskkYxEboOFud-3sewu-iavCp1CWpgbb-phi3XXgisiOjnY0ddZ7B3m8dkVl3DYmOP6qFpN4X62zV_vZNqkgO8ifTB243gGfFs13loPZWPe7FK-z_D_89-tPlMuBGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092544817</pqid></control><display><type>article</type><title>Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ribeiro, João Marcelo Lamim ; Bravo, Pablo ; Wang, Yihang ; Tiwary, Pratyush</creator><creatorcontrib>Ribeiro, João Marcelo Lamim ; Bravo, Pablo ; Wang, Yihang ; Tiwary, Pratyush</creatorcontrib><description>Here we propose the reweighted autoencoded variational Bayes for enhanced sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep learning in order to produce an increasingly accurate probability distribution along a low-dimensional latent space that captures the key features of the molecular simulation trajectory. Using the Kullback-Leibler divergence between this latent space distribution and the distribution of various trial reaction coordinates sampled from the molecular simulation, RAVE determines an optimum, yet nonetheless physically interpretable, reaction coordinate and optimum probability distribution. Both then directly serve as the biasing protocol for a new biased simulation, which is once again fed into the deep learning module with appropriate weights accounting for the bias, the procedure continuing until estimates of desirable thermodynamic observables are converged. Unlike recent methods using deep learning for enhanced sampling purposes, RAVE stands out in that (a) it naturally produces a physically interpretable reaction coordinate, (b) is independent of existing enhanced sampling protocols to enhance the fluctuations along the latent space identified via deep learning, and (c) it provides the ability to easily filter out spurious solutions learned by the deep learning procedure. The usefulness and reliability of RAVE is demonstrated by applying it to model potentials of increasing complexity, including computation of the binding free energy profile for a hydrophobic ligand–substrate system in explicit water with dissociation time of more than 3 min, in computer time at least twenty times less than that needed for umbrella sampling or metadynamics.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5025487</identifier><identifier>PMID: 30134694</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2018-08, Vol.149 (7), p.072301-072301</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e463b5730a68af928688a831dbb76fa13ab6956ede496ae2430dc524777373353</citedby><cites>FETCH-LOGICAL-c421t-e463b5730a68af928688a831dbb76fa13ab6956ede496ae2430dc524777373353</cites><orcidid>0000-0002-3566-2042 ; 0000-0002-4784-4900 ; 0000000247844900 ; 0000000235662042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5025487$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30134694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro, João Marcelo Lamim</creatorcontrib><creatorcontrib>Bravo, Pablo</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Tiwary, Pratyush</creatorcontrib><title>Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Here we propose the reweighted autoencoded variational Bayes for enhanced sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep learning in order to produce an increasingly accurate probability distribution along a low-dimensional latent space that captures the key features of the molecular simulation trajectory. Using the Kullback-Leibler divergence between this latent space distribution and the distribution of various trial reaction coordinates sampled from the molecular simulation, RAVE determines an optimum, yet nonetheless physically interpretable, reaction coordinate and optimum probability distribution. Both then directly serve as the biasing protocol for a new biased simulation, which is once again fed into the deep learning module with appropriate weights accounting for the bias, the procedure continuing until estimates of desirable thermodynamic observables are converged. Unlike recent methods using deep learning for enhanced sampling purposes, RAVE stands out in that (a) it naturally produces a physically interpretable reaction coordinate, (b) is independent of existing enhanced sampling protocols to enhance the fluctuations along the latent space identified via deep learning, and (c) it provides the ability to easily filter out spurious solutions learned by the deep learning procedure. The usefulness and reliability of RAVE is demonstrated by applying it to model potentials of increasing complexity, including computation of the binding free energy profile for a hydrophobic ligand–substrate system in explicit water with dissociation time of more than 3 min, in computer time at least twenty times less than that needed for umbrella sampling or metadynamics.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipvTg29AetyEzjw1D8c55gMMhKFeS9r-u1XaZibtZO_e6uY8CJ4SyIdf4IvQJcFjggW7IeMI04greYT6BCsdSqHxMepjTEmoBRY9dOb9G8aYSMpPUY9hwrjQvI9mC_iAYrlqIAtM21ioU5t1941xhWkKW5syuDVb8EFuXQD1ytRp9-xNtS6LehkMF5PX2egcneSm9HCxPwfo5W72PH0I50_3j9PJPEw5JU0IXLAkkgwboUyuqRJKGcVIliRS5IYwkwgdCciAa2GAcoazNKJcSskkYxEboOFud-3sewu-iavCp1CWpgbb-phi3XXgisiOjnY0ddZ7B3m8dkVl3DYmOP6qFpN4X62zV_vZNqkgO8ifTB243gGfFs13loPZWPe7FK-z_D_89-tPlMuBGg</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Ribeiro, João Marcelo Lamim</creator><creator>Bravo, Pablo</creator><creator>Wang, Yihang</creator><creator>Tiwary, Pratyush</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3566-2042</orcidid><orcidid>https://orcid.org/0000-0002-4784-4900</orcidid><orcidid>https://orcid.org/0000000247844900</orcidid><orcidid>https://orcid.org/0000000235662042</orcidid></search><sort><creationdate>20180821</creationdate><title>Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)</title><author>Ribeiro, João Marcelo Lamim ; Bravo, Pablo ; Wang, Yihang ; Tiwary, Pratyush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e463b5730a68af928688a831dbb76fa13ab6956ede496ae2430dc524777373353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, João Marcelo Lamim</creatorcontrib><creatorcontrib>Bravo, Pablo</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Tiwary, Pratyush</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, João Marcelo Lamim</au><au>Bravo, Pablo</au><au>Wang, Yihang</au><au>Tiwary, Pratyush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>149</volume><issue>7</issue><spage>072301</spage><epage>072301</epage><pages>072301-072301</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Here we propose the reweighted autoencoded variational Bayes for enhanced sampling (RAVE) method, a new iterative scheme that uses the deep learning framework of variational autoencoders to enhance sampling in molecular simulations. RAVE involves iterations between molecular simulations and deep learning in order to produce an increasingly accurate probability distribution along a low-dimensional latent space that captures the key features of the molecular simulation trajectory. Using the Kullback-Leibler divergence between this latent space distribution and the distribution of various trial reaction coordinates sampled from the molecular simulation, RAVE determines an optimum, yet nonetheless physically interpretable, reaction coordinate and optimum probability distribution. Both then directly serve as the biasing protocol for a new biased simulation, which is once again fed into the deep learning module with appropriate weights accounting for the bias, the procedure continuing until estimates of desirable thermodynamic observables are converged. Unlike recent methods using deep learning for enhanced sampling purposes, RAVE stands out in that (a) it naturally produces a physically interpretable reaction coordinate, (b) is independent of existing enhanced sampling protocols to enhance the fluctuations along the latent space identified via deep learning, and (c) it provides the ability to easily filter out spurious solutions learned by the deep learning procedure. The usefulness and reliability of RAVE is demonstrated by applying it to model potentials of increasing complexity, including computation of the binding free energy profile for a hydrophobic ligand–substrate system in explicit water with dissociation time of more than 3 min, in computer time at least twenty times less than that needed for umbrella sampling or metadynamics.</abstract><cop>United States</cop><pmid>30134694</pmid><doi>10.1063/1.5025487</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3566-2042</orcidid><orcidid>https://orcid.org/0000-0002-4784-4900</orcidid><orcidid>https://orcid.org/0000000247844900</orcidid><orcidid>https://orcid.org/0000000235662042</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-08, Vol.149 (7), p.072301-072301
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_30134694
source AIP Journals Complete; Alma/SFX Local Collection
title Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reweighted%20autoencoded%20variational%20Bayes%20for%20enhanced%20sampling%20(RAVE)&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ribeiro,%20Jo%C3%A3o%20Marcelo%20Lamim&rft.date=2018-08-21&rft.volume=149&rft.issue=7&rft.spage=072301&rft.epage=072301&rft.pages=072301-072301&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5025487&rft_dat=%3Cproquest_pubme%3E2092544817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092544817&rft_id=info:pmid/30134694&rfr_iscdi=true