Predicting tipping points of dynamical systems during a period-doubling route to chaos
Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of ti...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2018-07, Vol.28 (7), p.073102-073102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 073102 |
---|---|
container_issue | 7 |
container_start_page | 073102 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 28 |
creator | Nazarimehr, Fahimeh Jafari, Sajad Hashemi Golpayegani, Seyed Mohammad Reza Perc, Matjaž Sprott, Julien Clinton |
description | Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points. |
doi_str_mv | 10.1063/1.5038801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30070493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082095602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgipfRhS8gBTcqVE-Spk2XIt5gQBfqtqS5aIa2qUkqzNvbMqOCgqsTDh9_Dj9ChxjOMeT0Ap8zoJwD3kC7GHiZFjknm9ObZSlmADtoL4QFAGBC2TbaoQAFZCXdRS-PXisro-1ek2j7fpq9s10MiTOJWnaitVI0SViGqNuQqMFPRCS99tapVLmhbqaNd0PUSXSJfBMu7KMtI5qgD9Zzhp5vrp-u7tL5w-391eU8lZTTmHJTQCk55xqMLonULMsJ0JLmGdNKE1EwqEUNNcNaYGO4AIMLxUtJANeM0hk6WeX23r0POsSqtUHqphGddkOoCHACJcuBjPT4F124wXfjdZMqGMME2KhOV0p6F4LXpuq9bYVfVhiqqewKV-uyR3u0ThzqVqtv-dXuCM5WIEgbRbSu-zYfzv8kVb0y_-G_X38CKPWUrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551205</pqid></control><display><type>article</type><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</creator><creatorcontrib>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</creatorcontrib><description>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5038801</identifier><identifier>PMID: 30070493</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Autocorrelation functions ; Biological models (mathematics) ; Ecological models ; Indicators ; Kurtosis</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-07, Vol.28 (7), p.073102-073102</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</citedby><cites>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</cites><orcidid>0000-0002-3087-541X ; 0000-0002-2664-9006 ; 0000-0002-6845-7539 ; 0000-0001-7014-3283 ; 000000023087541X ; 0000000226649006 ; 0000000170143283 ; 0000000268457539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30070493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Hashemi Golpayegani, Seyed Mohammad Reza</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Sprott, Julien Clinton</creatorcontrib><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</description><subject>Autocorrelation functions</subject><subject>Biological models (mathematics)</subject><subject>Ecological models</subject><subject>Indicators</subject><subject>Kurtosis</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgipfRhS8gBTcqVE-Spk2XIt5gQBfqtqS5aIa2qUkqzNvbMqOCgqsTDh9_Dj9ChxjOMeT0Ap8zoJwD3kC7GHiZFjknm9ObZSlmADtoL4QFAGBC2TbaoQAFZCXdRS-PXisro-1ek2j7fpq9s10MiTOJWnaitVI0SViGqNuQqMFPRCS99tapVLmhbqaNd0PUSXSJfBMu7KMtI5qgD9Zzhp5vrp-u7tL5w-391eU8lZTTmHJTQCk55xqMLonULMsJ0JLmGdNKE1EwqEUNNcNaYGO4AIMLxUtJANeM0hk6WeX23r0POsSqtUHqphGddkOoCHACJcuBjPT4F124wXfjdZMqGMME2KhOV0p6F4LXpuq9bYVfVhiqqewKV-uyR3u0ThzqVqtv-dXuCM5WIEgbRbSu-zYfzv8kVb0y_-G_X38CKPWUrA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Nazarimehr, Fahimeh</creator><creator>Jafari, Sajad</creator><creator>Hashemi Golpayegani, Seyed Mohammad Reza</creator><creator>Perc, Matjaž</creator><creator>Sprott, Julien Clinton</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-541X</orcidid><orcidid>https://orcid.org/0000-0002-2664-9006</orcidid><orcidid>https://orcid.org/0000-0002-6845-7539</orcidid><orcidid>https://orcid.org/0000-0001-7014-3283</orcidid><orcidid>https://orcid.org/000000023087541X</orcidid><orcidid>https://orcid.org/0000000226649006</orcidid><orcidid>https://orcid.org/0000000170143283</orcidid><orcidid>https://orcid.org/0000000268457539</orcidid></search><sort><creationdate>201807</creationdate><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><author>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autocorrelation functions</topic><topic>Biological models (mathematics)</topic><topic>Ecological models</topic><topic>Indicators</topic><topic>Kurtosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Hashemi Golpayegani, Seyed Mohammad Reza</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Sprott, Julien Clinton</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarimehr, Fahimeh</au><au>Jafari, Sajad</au><au>Hashemi Golpayegani, Seyed Mohammad Reza</au><au>Perc, Matjaž</au><au>Sprott, Julien Clinton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting tipping points of dynamical systems during a period-doubling route to chaos</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-07</date><risdate>2018</risdate><volume>28</volume><issue>7</issue><spage>073102</spage><epage>073102</epage><pages>073102-073102</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30070493</pmid><doi>10.1063/1.5038801</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3087-541X</orcidid><orcidid>https://orcid.org/0000-0002-2664-9006</orcidid><orcidid>https://orcid.org/0000-0002-6845-7539</orcidid><orcidid>https://orcid.org/0000-0001-7014-3283</orcidid><orcidid>https://orcid.org/000000023087541X</orcidid><orcidid>https://orcid.org/0000000226649006</orcidid><orcidid>https://orcid.org/0000000170143283</orcidid><orcidid>https://orcid.org/0000000268457539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2018-07, Vol.28 (7), p.073102-073102 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_pubmed_primary_30070493 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Autocorrelation functions Biological models (mathematics) Ecological models Indicators Kurtosis |
title | Predicting tipping points of dynamical systems during a period-doubling route to chaos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20tipping%20points%20of%20dynamical%20systems%20during%20a%20period-doubling%20route%20to%20chaos&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nazarimehr,%20Fahimeh&rft.date=2018-07&rft.volume=28&rft.issue=7&rft.spage=073102&rft.epage=073102&rft.pages=073102-073102&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5038801&rft_dat=%3Cproquest_pubme%3E2082095602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551205&rft_id=info:pmid/30070493&rfr_iscdi=true |