Predicting tipping points of dynamical systems during a period-doubling route to chaos

Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2018-07, Vol.28 (7), p.073102-073102
Hauptverfasser: Nazarimehr, Fahimeh, Jafari, Sajad, Hashemi Golpayegani, Seyed Mohammad Reza, Perc, Matjaž, Sprott, Julien Clinton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 073102
container_issue 7
container_start_page 073102
container_title Chaos (Woodbury, N.Y.)
container_volume 28
creator Nazarimehr, Fahimeh
Jafari, Sajad
Hashemi Golpayegani, Seyed Mohammad Reza
Perc, Matjaž
Sprott, Julien Clinton
description Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.
doi_str_mv 10.1063/1.5038801
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30070493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082095602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgipfRhS8gBTcqVE-Spk2XIt5gQBfqtqS5aIa2qUkqzNvbMqOCgqsTDh9_Dj9ChxjOMeT0Ap8zoJwD3kC7GHiZFjknm9ObZSlmADtoL4QFAGBC2TbaoQAFZCXdRS-PXisro-1ek2j7fpq9s10MiTOJWnaitVI0SViGqNuQqMFPRCS99tapVLmhbqaNd0PUSXSJfBMu7KMtI5qgD9Zzhp5vrp-u7tL5w-391eU8lZTTmHJTQCk55xqMLonULMsJ0JLmGdNKE1EwqEUNNcNaYGO4AIMLxUtJANeM0hk6WeX23r0POsSqtUHqphGddkOoCHACJcuBjPT4F124wXfjdZMqGMME2KhOV0p6F4LXpuq9bYVfVhiqqewKV-uyR3u0ThzqVqtv-dXuCM5WIEgbRbSu-zYfzv8kVb0y_-G_X38CKPWUrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551205</pqid></control><display><type>article</type><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</creator><creatorcontrib>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</creatorcontrib><description>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5038801</identifier><identifier>PMID: 30070493</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Autocorrelation functions ; Biological models (mathematics) ; Ecological models ; Indicators ; Kurtosis</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-07, Vol.28 (7), p.073102-073102</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</citedby><cites>FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</cites><orcidid>0000-0002-3087-541X ; 0000-0002-2664-9006 ; 0000-0002-6845-7539 ; 0000-0001-7014-3283 ; 000000023087541X ; 0000000226649006 ; 0000000170143283 ; 0000000268457539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30070493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Hashemi Golpayegani, Seyed Mohammad Reza</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Sprott, Julien Clinton</creatorcontrib><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</description><subject>Autocorrelation functions</subject><subject>Biological models (mathematics)</subject><subject>Ecological models</subject><subject>Indicators</subject><subject>Kurtosis</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgipfRhS8gBTcqVE-Spk2XIt5gQBfqtqS5aIa2qUkqzNvbMqOCgqsTDh9_Dj9ChxjOMeT0Ap8zoJwD3kC7GHiZFjknm9ObZSlmADtoL4QFAGBC2TbaoQAFZCXdRS-PXisro-1ek2j7fpq9s10MiTOJWnaitVI0SViGqNuQqMFPRCS99tapVLmhbqaNd0PUSXSJfBMu7KMtI5qgD9Zzhp5vrp-u7tL5w-391eU8lZTTmHJTQCk55xqMLonULMsJ0JLmGdNKE1EwqEUNNcNaYGO4AIMLxUtJANeM0hk6WeX23r0POsSqtUHqphGddkOoCHACJcuBjPT4F124wXfjdZMqGMME2KhOV0p6F4LXpuq9bYVfVhiqqewKV-uyR3u0ThzqVqtv-dXuCM5WIEgbRbSu-zYfzv8kVb0y_-G_X38CKPWUrA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Nazarimehr, Fahimeh</creator><creator>Jafari, Sajad</creator><creator>Hashemi Golpayegani, Seyed Mohammad Reza</creator><creator>Perc, Matjaž</creator><creator>Sprott, Julien Clinton</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-541X</orcidid><orcidid>https://orcid.org/0000-0002-2664-9006</orcidid><orcidid>https://orcid.org/0000-0002-6845-7539</orcidid><orcidid>https://orcid.org/0000-0001-7014-3283</orcidid><orcidid>https://orcid.org/000000023087541X</orcidid><orcidid>https://orcid.org/0000000226649006</orcidid><orcidid>https://orcid.org/0000000170143283</orcidid><orcidid>https://orcid.org/0000000268457539</orcidid></search><sort><creationdate>201807</creationdate><title>Predicting tipping points of dynamical systems during a period-doubling route to chaos</title><author>Nazarimehr, Fahimeh ; Jafari, Sajad ; Hashemi Golpayegani, Seyed Mohammad Reza ; Perc, Matjaž ; Sprott, Julien Clinton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-8f709c888e0fe92ce54620393645ede2a750bab0b51ea1ff8a0f17d89c201b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autocorrelation functions</topic><topic>Biological models (mathematics)</topic><topic>Ecological models</topic><topic>Indicators</topic><topic>Kurtosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Hashemi Golpayegani, Seyed Mohammad Reza</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Sprott, Julien Clinton</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazarimehr, Fahimeh</au><au>Jafari, Sajad</au><au>Hashemi Golpayegani, Seyed Mohammad Reza</au><au>Perc, Matjaž</au><au>Sprott, Julien Clinton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting tipping points of dynamical systems during a period-doubling route to chaos</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-07</date><risdate>2018</risdate><volume>28</volume><issue>7</issue><spage>073102</spage><epage>073102</epage><pages>073102-073102</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Classical indicators of tipping points have limitations when they are applied to an ecological and a biological model. For example, they cannot correctly predict tipping points during a period-doubling route to chaos. To counter this limitation, we here try to modify four well-known indicators of tipping points, namely the autocorrelation function, the variance, the kurtosis, and the skewness. In particular, our proposed modification has two steps. First, the dynamic of the considered system is estimated using its time-series. Second, the original time-series is divided into some sub-time-series. In other words, we separate the time-series into different period-components. Then, the four different tipping point indicators are applied to the extracted sub-time-series. We test our approach on an ecological model that describes the logistic growth of populations and on an attention-deficit-disorder model. Both models show different tipping points in a period-doubling route to chaos, and our approach yields excellent results in predicting these tipping points.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30070493</pmid><doi>10.1063/1.5038801</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3087-541X</orcidid><orcidid>https://orcid.org/0000-0002-2664-9006</orcidid><orcidid>https://orcid.org/0000-0002-6845-7539</orcidid><orcidid>https://orcid.org/0000-0001-7014-3283</orcidid><orcidid>https://orcid.org/000000023087541X</orcidid><orcidid>https://orcid.org/0000000226649006</orcidid><orcidid>https://orcid.org/0000000170143283</orcidid><orcidid>https://orcid.org/0000000268457539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2018-07, Vol.28 (7), p.073102-073102
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_30070493
source AIP Journals Complete; Alma/SFX Local Collection
subjects Autocorrelation functions
Biological models (mathematics)
Ecological models
Indicators
Kurtosis
title Predicting tipping points of dynamical systems during a period-doubling route to chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20tipping%20points%20of%20dynamical%20systems%20during%20a%20period-doubling%20route%20to%20chaos&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nazarimehr,%20Fahimeh&rft.date=2018-07&rft.volume=28&rft.issue=7&rft.spage=073102&rft.epage=073102&rft.pages=073102-073102&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5038801&rft_dat=%3Cproquest_pubme%3E2082095602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551205&rft_id=info:pmid/30070493&rfr_iscdi=true