Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field
Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2019-10, Vol.25 (10), p.3011-3031 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3031 |
---|---|
container_issue | 10 |
container_start_page | 3011 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 25 |
creator | Behrisch, Michael Streeb, Dirk Stoffel, Florian Seebacher, Daniel Matejek, Brian Weber, Stefan Hagen Mittelstadt, Sebastian Pfister, Hanspeter Keim, Daniel |
description | Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years. |
doi_str_mv | 10.1109/TVCG.2018.2859973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_30059307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8423105</ieee_id><sourcerecordid>2080830700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwzu8carQoFD9Zew2az0S1JU7OJ0H_vltYinmZgvnl9CF1iGGMM6m6-SJ_GBLAcE8mVSugRGmLFcAwcxHHIIUliIogYoDPvlwCYMalO0YACcEUhGaJZ2tS1bY3TVbRwvg9hstLVpnPGR28b39nax5PiW6-M9ZFbRd2nje7dR_SgO_0HnTpbFefopNSVtxf7OELv08d5-hzPXp9e0sksNlSRLuZKlEYTEJQlmkqGFS4Ip1wQWQhiBC1ZzqShkvKcWswKZvPccK5FCbkuBR2h293cddt89dZ3We28sVWlV7bpfUZAggzvAQT05h-6bPo2nB0oIhkhWGAVKLyjTNt439oyW7eu1u0mw5BtVWdb1dlWdbZXHXqu95P7vLbFoePXbQCudoCz1h7KYSfFwOkP7vaAGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284221619</pqid></control><display><type>article</type><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><source>IEEE Electronic Library (IEL)</source><creator>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</creator><creatorcontrib>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</creatorcontrib><description>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2018.2859973</identifier><identifier>PMID: 30059307</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>advances ; Analytics ; Big Data ; Business ; commercial landscape ; Data analysis ; Data management ; Data visualization ; development roadmap ; Mathematical analysis ; Product development ; System comparison ; Systems analysis ; Technological innovation ; Usability ; User groups ; Visual analytics ; visual analytics research</subject><ispartof>IEEE transactions on visualization and computer graphics, 2019-10, Vol.25 (10), p.3011-3031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</citedby><cites>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</cites><orcidid>0000-0002-1102-103X ; 0000-0002-3517-9229 ; 0000-0003-0097-5855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8423105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8423105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30059307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrisch, Michael</creatorcontrib><creatorcontrib>Streeb, Dirk</creatorcontrib><creatorcontrib>Stoffel, Florian</creatorcontrib><creatorcontrib>Seebacher, Daniel</creatorcontrib><creatorcontrib>Matejek, Brian</creatorcontrib><creatorcontrib>Weber, Stefan Hagen</creatorcontrib><creatorcontrib>Mittelstadt, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Keim, Daniel</creatorcontrib><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</description><subject>advances</subject><subject>Analytics</subject><subject>Big Data</subject><subject>Business</subject><subject>commercial landscape</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data visualization</subject><subject>development roadmap</subject><subject>Mathematical analysis</subject><subject>Product development</subject><subject>System comparison</subject><subject>Systems analysis</subject><subject>Technological innovation</subject><subject>Usability</subject><subject>User groups</subject><subject>Visual analytics</subject><subject>visual analytics research</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwzu8carQoFD9Zew2az0S1JU7OJ0H_vltYinmZgvnl9CF1iGGMM6m6-SJ_GBLAcE8mVSugRGmLFcAwcxHHIIUliIogYoDPvlwCYMalO0YACcEUhGaJZ2tS1bY3TVbRwvg9hstLVpnPGR28b39nax5PiW6-M9ZFbRd2nje7dR_SgO_0HnTpbFefopNSVtxf7OELv08d5-hzPXp9e0sksNlSRLuZKlEYTEJQlmkqGFS4Ip1wQWQhiBC1ZzqShkvKcWswKZvPccK5FCbkuBR2h293cddt89dZ3We28sVWlV7bpfUZAggzvAQT05h-6bPo2nB0oIhkhWGAVKLyjTNt439oyW7eu1u0mw5BtVWdb1dlWdbZXHXqu95P7vLbFoePXbQCudoCz1h7KYSfFwOkP7vaAGA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Behrisch, Michael</creator><creator>Streeb, Dirk</creator><creator>Stoffel, Florian</creator><creator>Seebacher, Daniel</creator><creator>Matejek, Brian</creator><creator>Weber, Stefan Hagen</creator><creator>Mittelstadt, Sebastian</creator><creator>Pfister, Hanspeter</creator><creator>Keim, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1102-103X</orcidid><orcidid>https://orcid.org/0000-0002-3517-9229</orcidid><orcidid>https://orcid.org/0000-0003-0097-5855</orcidid></search><sort><creationdate>20191001</creationdate><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><author>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>advances</topic><topic>Analytics</topic><topic>Big Data</topic><topic>Business</topic><topic>commercial landscape</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data visualization</topic><topic>development roadmap</topic><topic>Mathematical analysis</topic><topic>Product development</topic><topic>System comparison</topic><topic>Systems analysis</topic><topic>Technological innovation</topic><topic>Usability</topic><topic>User groups</topic><topic>Visual analytics</topic><topic>visual analytics research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrisch, Michael</creatorcontrib><creatorcontrib>Streeb, Dirk</creatorcontrib><creatorcontrib>Stoffel, Florian</creatorcontrib><creatorcontrib>Seebacher, Daniel</creatorcontrib><creatorcontrib>Matejek, Brian</creatorcontrib><creatorcontrib>Weber, Stefan Hagen</creatorcontrib><creatorcontrib>Mittelstadt, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Keim, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Behrisch, Michael</au><au>Streeb, Dirk</au><au>Stoffel, Florian</au><au>Seebacher, Daniel</au><au>Matejek, Brian</au><au>Weber, Stefan Hagen</au><au>Mittelstadt, Sebastian</au><au>Pfister, Hanspeter</au><au>Keim, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>25</volume><issue>10</issue><spage>3011</spage><epage>3031</epage><pages>3011-3031</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30059307</pmid><doi>10.1109/TVCG.2018.2859973</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1102-103X</orcidid><orcidid>https://orcid.org/0000-0002-3517-9229</orcidid><orcidid>https://orcid.org/0000-0003-0097-5855</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2019-10, Vol.25 (10), p.3011-3031 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_30059307 |
source | IEEE Electronic Library (IEL) |
subjects | advances Analytics Big Data Business commercial landscape Data analysis Data management Data visualization development roadmap Mathematical analysis Product development System comparison Systems analysis Technological innovation Usability User groups Visual analytics visual analytics research |
title | Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commercial%20Visual%20Analytics%20Systems-Advances%20in%20the%20Big%20Data%20Analytics%20Field&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Behrisch,%20Michael&rft.date=2019-10-01&rft.volume=25&rft.issue=10&rft.spage=3011&rft.epage=3031&rft.pages=3011-3031&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2018.2859973&rft_dat=%3Cproquest_RIE%3E2080830700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284221619&rft_id=info:pmid/30059307&rft_ieee_id=8423105&rfr_iscdi=true |