Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field

Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2019-10, Vol.25 (10), p.3011-3031
Hauptverfasser: Behrisch, Michael, Streeb, Dirk, Stoffel, Florian, Seebacher, Daniel, Matejek, Brian, Weber, Stefan Hagen, Mittelstadt, Sebastian, Pfister, Hanspeter, Keim, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3031
container_issue 10
container_start_page 3011
container_title IEEE transactions on visualization and computer graphics
container_volume 25
creator Behrisch, Michael
Streeb, Dirk
Stoffel, Florian
Seebacher, Daniel
Matejek, Brian
Weber, Stefan Hagen
Mittelstadt, Sebastian
Pfister, Hanspeter
Keim, Daniel
description Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.
doi_str_mv 10.1109/TVCG.2018.2859973
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_30059307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8423105</ieee_id><sourcerecordid>2080830700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwzu8carQoFD9Zew2az0S1JU7OJ0H_vltYinmZgvnl9CF1iGGMM6m6-SJ_GBLAcE8mVSugRGmLFcAwcxHHIIUliIogYoDPvlwCYMalO0YACcEUhGaJZ2tS1bY3TVbRwvg9hstLVpnPGR28b39nax5PiW6-M9ZFbRd2nje7dR_SgO_0HnTpbFefopNSVtxf7OELv08d5-hzPXp9e0sksNlSRLuZKlEYTEJQlmkqGFS4Ip1wQWQhiBC1ZzqShkvKcWswKZvPccK5FCbkuBR2h293cddt89dZ3We28sVWlV7bpfUZAggzvAQT05h-6bPo2nB0oIhkhWGAVKLyjTNt439oyW7eu1u0mw5BtVWdb1dlWdbZXHXqu95P7vLbFoePXbQCudoCz1h7KYSfFwOkP7vaAGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284221619</pqid></control><display><type>article</type><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><source>IEEE Electronic Library (IEL)</source><creator>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</creator><creatorcontrib>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</creatorcontrib><description>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2018.2859973</identifier><identifier>PMID: 30059307</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>advances ; Analytics ; Big Data ; Business ; commercial landscape ; Data analysis ; Data management ; Data visualization ; development roadmap ; Mathematical analysis ; Product development ; System comparison ; Systems analysis ; Technological innovation ; Usability ; User groups ; Visual analytics ; visual analytics research</subject><ispartof>IEEE transactions on visualization and computer graphics, 2019-10, Vol.25 (10), p.3011-3031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</citedby><cites>FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</cites><orcidid>0000-0002-1102-103X ; 0000-0002-3517-9229 ; 0000-0003-0097-5855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8423105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8423105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30059307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrisch, Michael</creatorcontrib><creatorcontrib>Streeb, Dirk</creatorcontrib><creatorcontrib>Stoffel, Florian</creatorcontrib><creatorcontrib>Seebacher, Daniel</creatorcontrib><creatorcontrib>Matejek, Brian</creatorcontrib><creatorcontrib>Weber, Stefan Hagen</creatorcontrib><creatorcontrib>Mittelstadt, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Keim, Daniel</creatorcontrib><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</description><subject>advances</subject><subject>Analytics</subject><subject>Big Data</subject><subject>Business</subject><subject>commercial landscape</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data visualization</subject><subject>development roadmap</subject><subject>Mathematical analysis</subject><subject>Product development</subject><subject>System comparison</subject><subject>Systems analysis</subject><subject>Technological innovation</subject><subject>Usability</subject><subject>User groups</subject><subject>Visual analytics</subject><subject>visual analytics research</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwzu8carQoFD9Zew2az0S1JU7OJ0H_vltYinmZgvnl9CF1iGGMM6m6-SJ_GBLAcE8mVSugRGmLFcAwcxHHIIUliIogYoDPvlwCYMalO0YACcEUhGaJZ2tS1bY3TVbRwvg9hstLVpnPGR28b39nax5PiW6-M9ZFbRd2nje7dR_SgO_0HnTpbFefopNSVtxf7OELv08d5-hzPXp9e0sksNlSRLuZKlEYTEJQlmkqGFS4Ip1wQWQhiBC1ZzqShkvKcWswKZvPccK5FCbkuBR2h293cddt89dZ3We28sVWlV7bpfUZAggzvAQT05h-6bPo2nB0oIhkhWGAVKLyjTNt439oyW7eu1u0mw5BtVWdb1dlWdbZXHXqu95P7vLbFoePXbQCudoCz1h7KYSfFwOkP7vaAGA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Behrisch, Michael</creator><creator>Streeb, Dirk</creator><creator>Stoffel, Florian</creator><creator>Seebacher, Daniel</creator><creator>Matejek, Brian</creator><creator>Weber, Stefan Hagen</creator><creator>Mittelstadt, Sebastian</creator><creator>Pfister, Hanspeter</creator><creator>Keim, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1102-103X</orcidid><orcidid>https://orcid.org/0000-0002-3517-9229</orcidid><orcidid>https://orcid.org/0000-0003-0097-5855</orcidid></search><sort><creationdate>20191001</creationdate><title>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</title><author>Behrisch, Michael ; Streeb, Dirk ; Stoffel, Florian ; Seebacher, Daniel ; Matejek, Brian ; Weber, Stefan Hagen ; Mittelstadt, Sebastian ; Pfister, Hanspeter ; Keim, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-596fca206347a384191d2535628d62c63f4b48c3835b3e14d4ebbc55a6f0baf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>advances</topic><topic>Analytics</topic><topic>Big Data</topic><topic>Business</topic><topic>commercial landscape</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data visualization</topic><topic>development roadmap</topic><topic>Mathematical analysis</topic><topic>Product development</topic><topic>System comparison</topic><topic>Systems analysis</topic><topic>Technological innovation</topic><topic>Usability</topic><topic>User groups</topic><topic>Visual analytics</topic><topic>visual analytics research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrisch, Michael</creatorcontrib><creatorcontrib>Streeb, Dirk</creatorcontrib><creatorcontrib>Stoffel, Florian</creatorcontrib><creatorcontrib>Seebacher, Daniel</creatorcontrib><creatorcontrib>Matejek, Brian</creatorcontrib><creatorcontrib>Weber, Stefan Hagen</creatorcontrib><creatorcontrib>Mittelstadt, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Keim, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Behrisch, Michael</au><au>Streeb, Dirk</au><au>Stoffel, Florian</au><au>Seebacher, Daniel</au><au>Matejek, Brian</au><au>Weber, Stefan Hagen</au><au>Mittelstadt, Sebastian</au><au>Pfister, Hanspeter</au><au>Keim, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>25</volume><issue>10</issue><spage>3011</spage><epage>3031</epage><pages>3011-3031</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems’ roadmaps in the coming years.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30059307</pmid><doi>10.1109/TVCG.2018.2859973</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1102-103X</orcidid><orcidid>https://orcid.org/0000-0002-3517-9229</orcidid><orcidid>https://orcid.org/0000-0003-0097-5855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2019-10, Vol.25 (10), p.3011-3031
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_30059307
source IEEE Electronic Library (IEL)
subjects advances
Analytics
Big Data
Business
commercial landscape
Data analysis
Data management
Data visualization
development roadmap
Mathematical analysis
Product development
System comparison
Systems analysis
Technological innovation
Usability
User groups
Visual analytics
visual analytics research
title Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commercial%20Visual%20Analytics%20Systems-Advances%20in%20the%20Big%20Data%20Analytics%20Field&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Behrisch,%20Michael&rft.date=2019-10-01&rft.volume=25&rft.issue=10&rft.spage=3011&rft.epage=3031&rft.pages=3011-3031&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2018.2859973&rft_dat=%3Cproquest_RIE%3E2080830700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284221619&rft_id=info:pmid/30059307&rft_ieee_id=8423105&rfr_iscdi=true