Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure
Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally,...
Gespeichert in:
Veröffentlicht in: | Integrative biology (Cambridge) 2018-08, Vol.1 (8), p.442-449 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 8 |
container_start_page | 442 |
container_title | Integrative biology (Cambridge) |
container_volume | 1 |
creator | Saito, Atsushi Terai, Tatsuya Makino, Kei Takahashi, Masayuki Yoshie, Sachiko Ikehata, Masateru Jimbo, Yasuhiko Wada, Keiji Suzuki, Yukihisa Nakasono, Satoshi |
description | Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca
2+
]
i
) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m
−1
. In contrast, the threshold of the [Ca
2+
]
i
spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs.
Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system. |
doi_str_mv | 10.1039/c8ib00097b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30052248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078585505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</originalsourceid><addsrcrecordid>eNpdkUtLHUEQhRsxxEeyca80ZCOBMTWPnule6iWJgiBIsh76Ua0tMz3XfkDuIv89rdcHZFWHqo_DoQ4hRzWc1dCKb5o7BQBiUDtkvx7YUIkB-O6r7kW3Rw5ifADoO4DuI9lrAVjTdHyf_L1FOVXJzUgNJtTJLZ4ulsayylOONGBcLz4idZ7qPKUc0FCPOZQlVRt67-7uK-cT-ujShj6pMKNxMmFlAz5m9HpDZ3nnMTlNrcPJUPyzXmJx-kQ-WDlF_PwyD8nvH99_rS6r65ufV6vz60p30KbKSG5ULUCiVEY0qu6U7Y2wzaBa5MpypgzjPQrGrUUuGisHgwIEF7URsmsPyenWdx2WkiimcXZR4zRJj0uOYwMDZ5wxYAX98h_6sOTgS7pC8YE1rG37Qn3dUjosMQa04zq4WYbNWMP4VMq44lcXz6VcFPjkxTKr8po39LWFAhxvgRD12_W91fYfOuuUlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087525336</pqid></control><display><type>article</type><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</creator><creatorcontrib>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</creatorcontrib><description>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca
2+
]
i
) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m
−1
. In contrast, the threshold of the [Ca
2+
]
i
spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs.
Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c8ib00097b</identifier><identifier>PMID: 30052248</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Brain ; Calcium ; Calcium (intracellular) ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Cell Body - physiology ; Cells, Cultured ; Central nervous system ; Computer Systems ; Data processing ; Dendrites ; Dosimeters ; Dosimetry ; Electric fields ; Electromagnetic fields ; Electromagnetic Fields - adverse effects ; Exposure ; Fiber Optic Technology ; Fiber optics ; Fibers ; Firing pattern ; Humans ; Information processing ; Magnetic fields ; Magnetic Fields - adverse effects ; Neuroimaging ; Neuromodulation ; Neurons ; Neurons - physiology ; Optical fibers ; Rats ; Real time ; Spikes</subject><ispartof>Integrative biology (Cambridge), 2018-08, Vol.1 (8), p.442-449</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</citedby><cites>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</cites><orcidid>0000-0002-3095-0424 ; 0000-0003-4361-5323 ; 0000-0001-8010-152X ; 0000-0002-8590-8813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30052248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Terai, Tatsuya</creatorcontrib><creatorcontrib>Makino, Kei</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Yoshie, Sachiko</creatorcontrib><creatorcontrib>Ikehata, Masateru</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Wada, Keiji</creatorcontrib><creatorcontrib>Suzuki, Yukihisa</creatorcontrib><creatorcontrib>Nakasono, Satoshi</creatorcontrib><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><title>Integrative biology (Cambridge)</title><addtitle>Integr Biol (Camb)</addtitle><description>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca
2+
]
i
) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m
−1
. In contrast, the threshold of the [Ca
2+
]
i
spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs.
Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</description><subject>Animals</subject><subject>Brain</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Cell Body - physiology</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Computer Systems</subject><subject>Data processing</subject><subject>Dendrites</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic Fields - adverse effects</subject><subject>Exposure</subject><subject>Fiber Optic Technology</subject><subject>Fiber optics</subject><subject>Fibers</subject><subject>Firing pattern</subject><subject>Humans</subject><subject>Information processing</subject><subject>Magnetic fields</subject><subject>Magnetic Fields - adverse effects</subject><subject>Neuroimaging</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optical fibers</subject><subject>Rats</subject><subject>Real time</subject><subject>Spikes</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLHUEQhRsxxEeyca80ZCOBMTWPnule6iWJgiBIsh76Ua0tMz3XfkDuIv89rdcHZFWHqo_DoQ4hRzWc1dCKb5o7BQBiUDtkvx7YUIkB-O6r7kW3Rw5ifADoO4DuI9lrAVjTdHyf_L1FOVXJzUgNJtTJLZ4ulsayylOONGBcLz4idZ7qPKUc0FCPOZQlVRt67-7uK-cT-ujShj6pMKNxMmFlAz5m9HpDZ3nnMTlNrcPJUPyzXmJx-kQ-WDlF_PwyD8nvH99_rS6r65ufV6vz60p30KbKSG5ULUCiVEY0qu6U7Y2wzaBa5MpypgzjPQrGrUUuGisHgwIEF7URsmsPyenWdx2WkiimcXZR4zRJj0uOYwMDZ5wxYAX98h_6sOTgS7pC8YE1rG37Qn3dUjosMQa04zq4WYbNWMP4VMq44lcXz6VcFPjkxTKr8po39LWFAhxvgRD12_W91fYfOuuUlA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Saito, Atsushi</creator><creator>Terai, Tatsuya</creator><creator>Makino, Kei</creator><creator>Takahashi, Masayuki</creator><creator>Yoshie, Sachiko</creator><creator>Ikehata, Masateru</creator><creator>Jimbo, Yasuhiko</creator><creator>Wada, Keiji</creator><creator>Suzuki, Yukihisa</creator><creator>Nakasono, Satoshi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3095-0424</orcidid><orcidid>https://orcid.org/0000-0003-4361-5323</orcidid><orcidid>https://orcid.org/0000-0001-8010-152X</orcidid><orcidid>https://orcid.org/0000-0002-8590-8813</orcidid></search><sort><creationdate>20180801</creationdate><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><author>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Cell Body - physiology</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Computer Systems</topic><topic>Data processing</topic><topic>Dendrites</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic Fields - adverse effects</topic><topic>Exposure</topic><topic>Fiber Optic Technology</topic><topic>Fiber optics</topic><topic>Fibers</topic><topic>Firing pattern</topic><topic>Humans</topic><topic>Information processing</topic><topic>Magnetic fields</topic><topic>Magnetic Fields - adverse effects</topic><topic>Neuroimaging</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optical fibers</topic><topic>Rats</topic><topic>Real time</topic><topic>Spikes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Terai, Tatsuya</creatorcontrib><creatorcontrib>Makino, Kei</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Yoshie, Sachiko</creatorcontrib><creatorcontrib>Ikehata, Masateru</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Wada, Keiji</creatorcontrib><creatorcontrib>Suzuki, Yukihisa</creatorcontrib><creatorcontrib>Nakasono, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative biology (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Atsushi</au><au>Terai, Tatsuya</au><au>Makino, Kei</au><au>Takahashi, Masayuki</au><au>Yoshie, Sachiko</au><au>Ikehata, Masateru</au><au>Jimbo, Yasuhiko</au><au>Wada, Keiji</au><au>Suzuki, Yukihisa</au><au>Nakasono, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</atitle><jtitle>Integrative biology (Cambridge)</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>1</volume><issue>8</issue><spage>442</spage><epage>449</epage><pages>442-449</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca
2+
]
i
) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m
−1
. In contrast, the threshold of the [Ca
2+
]
i
spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs.
Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30052248</pmid><doi>10.1039/c8ib00097b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3095-0424</orcidid><orcidid>https://orcid.org/0000-0003-4361-5323</orcidid><orcidid>https://orcid.org/0000-0001-8010-152X</orcidid><orcidid>https://orcid.org/0000-0002-8590-8813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-9694 |
ispartof | Integrative biology (Cambridge), 2018-08, Vol.1 (8), p.442-449 |
issn | 1757-9694 1757-9708 |
language | eng |
recordid | cdi_pubmed_primary_30052248 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Animals Brain Calcium Calcium (intracellular) Calcium ions Calcium Signaling Calcium signalling Cell Body - physiology Cells, Cultured Central nervous system Computer Systems Data processing Dendrites Dosimeters Dosimetry Electric fields Electromagnetic fields Electromagnetic Fields - adverse effects Exposure Fiber Optic Technology Fiber optics Fibers Firing pattern Humans Information processing Magnetic fields Magnetic Fields - adverse effects Neuroimaging Neuromodulation Neurons Neurons - physiology Optical fibers Rats Real time Spikes |
title | Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20detection%20of%20stimulus%20response%20in%20cultured%20neurons%20by%20high-intensity%20intermediate-frequency%20magnetic%20field%20exposure&rft.jtitle=Integrative%20biology%20(Cambridge)&rft.au=Saito,%20Atsushi&rft.date=2018-08-01&rft.volume=1&rft.issue=8&rft.spage=442&rft.epage=449&rft.pages=442-449&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c8ib00097b&rft_dat=%3Cproquest_pubme%3E2078585505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087525336&rft_id=info:pmid/30052248&rfr_iscdi=true |