Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure

Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative biology (Cambridge) 2018-08, Vol.1 (8), p.442-449
Hauptverfasser: Saito, Atsushi, Terai, Tatsuya, Makino, Kei, Takahashi, Masayuki, Yoshie, Sachiko, Ikehata, Masateru, Jimbo, Yasuhiko, Wada, Keiji, Suzuki, Yukihisa, Nakasono, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 8
container_start_page 442
container_title Integrative biology (Cambridge)
container_volume 1
creator Saito, Atsushi
Terai, Tatsuya
Makino, Kei
Takahashi, Masayuki
Yoshie, Sachiko
Ikehata, Masateru
Jimbo, Yasuhiko
Wada, Keiji
Suzuki, Yukihisa
Nakasono, Satoshi
description Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca 2+ ] i ) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m −1 . In contrast, the threshold of the [Ca 2+ ] i spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs. Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.
doi_str_mv 10.1039/c8ib00097b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30052248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078585505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</originalsourceid><addsrcrecordid>eNpdkUtLHUEQhRsxxEeyca80ZCOBMTWPnule6iWJgiBIsh76Ua0tMz3XfkDuIv89rdcHZFWHqo_DoQ4hRzWc1dCKb5o7BQBiUDtkvx7YUIkB-O6r7kW3Rw5ifADoO4DuI9lrAVjTdHyf_L1FOVXJzUgNJtTJLZ4ulsayylOONGBcLz4idZ7qPKUc0FCPOZQlVRt67-7uK-cT-ujShj6pMKNxMmFlAz5m9HpDZ3nnMTlNrcPJUPyzXmJx-kQ-WDlF_PwyD8nvH99_rS6r65ufV6vz60p30KbKSG5ULUCiVEY0qu6U7Y2wzaBa5MpypgzjPQrGrUUuGisHgwIEF7URsmsPyenWdx2WkiimcXZR4zRJj0uOYwMDZ5wxYAX98h_6sOTgS7pC8YE1rG37Qn3dUjosMQa04zq4WYbNWMP4VMq44lcXz6VcFPjkxTKr8po39LWFAhxvgRD12_W91fYfOuuUlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087525336</pqid></control><display><type>article</type><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</creator><creatorcontrib>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</creatorcontrib><description>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca 2+ ] i ) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m −1 . In contrast, the threshold of the [Ca 2+ ] i spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs. Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c8ib00097b</identifier><identifier>PMID: 30052248</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Brain ; Calcium ; Calcium (intracellular) ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Cell Body - physiology ; Cells, Cultured ; Central nervous system ; Computer Systems ; Data processing ; Dendrites ; Dosimeters ; Dosimetry ; Electric fields ; Electromagnetic fields ; Electromagnetic Fields - adverse effects ; Exposure ; Fiber Optic Technology ; Fiber optics ; Fibers ; Firing pattern ; Humans ; Information processing ; Magnetic fields ; Magnetic Fields - adverse effects ; Neuroimaging ; Neuromodulation ; Neurons ; Neurons - physiology ; Optical fibers ; Rats ; Real time ; Spikes</subject><ispartof>Integrative biology (Cambridge), 2018-08, Vol.1 (8), p.442-449</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</citedby><cites>FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</cites><orcidid>0000-0002-3095-0424 ; 0000-0003-4361-5323 ; 0000-0001-8010-152X ; 0000-0002-8590-8813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30052248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Terai, Tatsuya</creatorcontrib><creatorcontrib>Makino, Kei</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Yoshie, Sachiko</creatorcontrib><creatorcontrib>Ikehata, Masateru</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Wada, Keiji</creatorcontrib><creatorcontrib>Suzuki, Yukihisa</creatorcontrib><creatorcontrib>Nakasono, Satoshi</creatorcontrib><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><title>Integrative biology (Cambridge)</title><addtitle>Integr Biol (Camb)</addtitle><description>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca 2+ ] i ) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m −1 . In contrast, the threshold of the [Ca 2+ ] i spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs. Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</description><subject>Animals</subject><subject>Brain</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Cell Body - physiology</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Computer Systems</subject><subject>Data processing</subject><subject>Dendrites</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic Fields - adverse effects</subject><subject>Exposure</subject><subject>Fiber Optic Technology</subject><subject>Fiber optics</subject><subject>Fibers</subject><subject>Firing pattern</subject><subject>Humans</subject><subject>Information processing</subject><subject>Magnetic fields</subject><subject>Magnetic Fields - adverse effects</subject><subject>Neuroimaging</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optical fibers</subject><subject>Rats</subject><subject>Real time</subject><subject>Spikes</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLHUEQhRsxxEeyca80ZCOBMTWPnule6iWJgiBIsh76Ua0tMz3XfkDuIv89rdcHZFWHqo_DoQ4hRzWc1dCKb5o7BQBiUDtkvx7YUIkB-O6r7kW3Rw5ifADoO4DuI9lrAVjTdHyf_L1FOVXJzUgNJtTJLZ4ulsayylOONGBcLz4idZ7qPKUc0FCPOZQlVRt67-7uK-cT-ujShj6pMKNxMmFlAz5m9HpDZ3nnMTlNrcPJUPyzXmJx-kQ-WDlF_PwyD8nvH99_rS6r65ufV6vz60p30KbKSG5ULUCiVEY0qu6U7Y2wzaBa5MpypgzjPQrGrUUuGisHgwIEF7URsmsPyenWdx2WkiimcXZR4zRJj0uOYwMDZ5wxYAX98h_6sOTgS7pC8YE1rG37Qn3dUjosMQa04zq4WYbNWMP4VMq44lcXz6VcFPjkxTKr8po39LWFAhxvgRD12_W91fYfOuuUlA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Saito, Atsushi</creator><creator>Terai, Tatsuya</creator><creator>Makino, Kei</creator><creator>Takahashi, Masayuki</creator><creator>Yoshie, Sachiko</creator><creator>Ikehata, Masateru</creator><creator>Jimbo, Yasuhiko</creator><creator>Wada, Keiji</creator><creator>Suzuki, Yukihisa</creator><creator>Nakasono, Satoshi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3095-0424</orcidid><orcidid>https://orcid.org/0000-0003-4361-5323</orcidid><orcidid>https://orcid.org/0000-0001-8010-152X</orcidid><orcidid>https://orcid.org/0000-0002-8590-8813</orcidid></search><sort><creationdate>20180801</creationdate><title>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</title><author>Saito, Atsushi ; Terai, Tatsuya ; Makino, Kei ; Takahashi, Masayuki ; Yoshie, Sachiko ; Ikehata, Masateru ; Jimbo, Yasuhiko ; Wada, Keiji ; Suzuki, Yukihisa ; Nakasono, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-da8db190aeabd92b14bf6d9f27b3e8bf85bd586e958ffe892fa7de909891d9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Cell Body - physiology</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Computer Systems</topic><topic>Data processing</topic><topic>Dendrites</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic Fields - adverse effects</topic><topic>Exposure</topic><topic>Fiber Optic Technology</topic><topic>Fiber optics</topic><topic>Fibers</topic><topic>Firing pattern</topic><topic>Humans</topic><topic>Information processing</topic><topic>Magnetic fields</topic><topic>Magnetic Fields - adverse effects</topic><topic>Neuroimaging</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optical fibers</topic><topic>Rats</topic><topic>Real time</topic><topic>Spikes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Terai, Tatsuya</creatorcontrib><creatorcontrib>Makino, Kei</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Yoshie, Sachiko</creatorcontrib><creatorcontrib>Ikehata, Masateru</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Wada, Keiji</creatorcontrib><creatorcontrib>Suzuki, Yukihisa</creatorcontrib><creatorcontrib>Nakasono, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative biology (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Atsushi</au><au>Terai, Tatsuya</au><au>Makino, Kei</au><au>Takahashi, Masayuki</au><au>Yoshie, Sachiko</au><au>Ikehata, Masateru</au><au>Jimbo, Yasuhiko</au><au>Wada, Keiji</au><au>Suzuki, Yukihisa</au><au>Nakasono, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure</atitle><jtitle>Integrative biology (Cambridge)</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>1</volume><issue>8</issue><spage>442</spage><epage>449</epage><pages>442-449</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>Threshold values of neuronal stimulation and modulation associated with exposure to time-varying electromagnetic fields contribute to establishing human protection guidelines and standards. However, biological evidence of threshold values in the intermediate-frequency range is limited. Additionally, although it is known that dendrites, a type of unmyelinated neuronal fibre, play an important role in information processing in the central nervous system, the stimulus threshold in dendrites has not been sufficiently investigated. We evaluated the excitation site-specific stimulus response of rat brain-derived cultured neurons by using a 20 kHz high-intensity intermediate-frequency magnetic field (hIF-MF) exposure system, a non-conductive fibre-optic imaging (NCFI) system, combined with a micro-patterning technique. Our hIF-MF exposure and NCFI system permitted real-time detection of the intracellular calcium ([Ca 2+ ] i ) spikes in neuronal cell bodies or unmyelinated neuronal fibres during exposure to a 20 kHz, 70 mT (peak), burst-type sinusoidal wave hIF-MF. Dosimetry of the induced electric fields intensities in the extracellular solution indicated that about 50% of unmyelinated neuronal fibres respond at about 147 V m −1 . In contrast, the threshold of the [Ca 2+ ] i spikes in neuronal cell bodies were lower than that in unmyelinated neuronal fibres. Our results provide a basis for understanding site-specific differences in the responses of cultured neurons to hIF-MFs. Stimulus response of cultured neurons during high-intensity intermediate-frequency magnetic field exposure was detected by a non-conductive fibre-optic imaging system.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30052248</pmid><doi>10.1039/c8ib00097b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3095-0424</orcidid><orcidid>https://orcid.org/0000-0003-4361-5323</orcidid><orcidid>https://orcid.org/0000-0001-8010-152X</orcidid><orcidid>https://orcid.org/0000-0002-8590-8813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1757-9694
ispartof Integrative biology (Cambridge), 2018-08, Vol.1 (8), p.442-449
issn 1757-9694
1757-9708
language eng
recordid cdi_pubmed_primary_30052248
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Brain
Calcium
Calcium (intracellular)
Calcium ions
Calcium Signaling
Calcium signalling
Cell Body - physiology
Cells, Cultured
Central nervous system
Computer Systems
Data processing
Dendrites
Dosimeters
Dosimetry
Electric fields
Electromagnetic fields
Electromagnetic Fields - adverse effects
Exposure
Fiber Optic Technology
Fiber optics
Fibers
Firing pattern
Humans
Information processing
Magnetic fields
Magnetic Fields - adverse effects
Neuroimaging
Neuromodulation
Neurons
Neurons - physiology
Optical fibers
Rats
Real time
Spikes
title Real-time detection of stimulus response in cultured neurons by high-intensity intermediate-frequency magnetic field exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20detection%20of%20stimulus%20response%20in%20cultured%20neurons%20by%20high-intensity%20intermediate-frequency%20magnetic%20field%20exposure&rft.jtitle=Integrative%20biology%20(Cambridge)&rft.au=Saito,%20Atsushi&rft.date=2018-08-01&rft.volume=1&rft.issue=8&rft.spage=442&rft.epage=449&rft.pages=442-449&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c8ib00097b&rft_dat=%3Cproquest_pubme%3E2078585505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087525336&rft_id=info:pmid/30052248&rfr_iscdi=true