Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects

In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-10, Vol.29 (10), p.5122-5135
Hauptverfasser: Mammone, Nadia, Ieracitano, Cosimo, Adeli, Hojjat, Bramanti, Alessia, Morabito, Francesco C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5135
container_issue 10
container_start_page 5122
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Mammone, Nadia
Ieracitano, Cosimo
Adeli, Hojjat
Bramanti, Alessia
Morabito, Francesco C.
description In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD ( p < 0.05 ), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
doi_str_mv 10.1109/TNNLS.2018.2791644
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29994428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8281011</ieee_id><sourcerecordid>2068341600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</originalsourceid><addsrcrecordid>eNpdkcFuEzEURS0EolXpD4CELLFhM8HP43jsJaShLUoDUovEzvLYb8BhMtPaHkH_HoeELHgbW_K5V08-hLwENgNg-t3der26nXEGasYbDVKIJ-SUg-QVr5V6erw3307IeUobVkayuRT6OTnhWmshuDolv79g3E7Z5jAO9JN1zkZPL0LKdnBYfbAJPb0KGG10P4KzPV30U8oYw_Cd5pEuUw5bm5Eul5d0jfnXGH_SCxxSyI_0ZvShK6Fdd6JhoDeLa3o7tRt0Ob0gzzrbJzw_nGfk68fl3eKqWn2-vF68X1VOQJMr5bXEuW27FgSylilohRW11ErXvtbOS8U4rz1wjnM55x122nZlGosdOl-fkbf73vs4PkyYstmG5LDv7YDjlAxnUtUCJGMFffMfuhmnOJTtDAdooGkaqQvF95SLY0oRO3Mfyx_ERwPM7NSYv2rMTo05qCmh14fqqd2iP0b-iSjAqz0QEPH4rLgCBlD_AeRkk3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117177769</pqid></control><display><type>article</type><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><source>IEEE Electronic Library (IEL)</source><creator>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</creator><creatorcontrib>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</creatorcontrib><description>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;p &lt; 0.05 &lt;/tex-math&gt;&lt;/inline-formula&gt;), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2791644</identifier><identifier>PMID: 29994428</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Alzheimer’s Disease (AD) ; Brain ; brain connectivity ; Cluster analysis ; Clustering ; Cognitive ability ; Coherence ; Complexity theory ; Connectivity ; Coupling ; Couplings ; Dementia ; Density ; EEG ; Electrodes ; electroencephalographic (EEG) ; Electroencephalography ; Evaluation ; hierarchical clustering (HC) ; Information processing ; Learning algorithms ; Machine learning ; mild cognitive impairment (MCI) ; network density ; Neural networks ; Nonlinear analysis ; Optical wavelength conversion ; Patients ; permutation entropy (PE) ; permutation Jaccard distance (PJD) ; Permutations ; Signal processing ; Strength ; Wavelet analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-10, Vol.29 (10), p.5122-5135</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</citedby><cites>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</cites><orcidid>0000-0003-0734-9136 ; 0000-0003-4962-3500 ; 0000-0001-5718-1453 ; 0000-0001-7890-2897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8281011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8281011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mammone, Nadia</creatorcontrib><creatorcontrib>Ieracitano, Cosimo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><creatorcontrib>Bramanti, Alessia</creatorcontrib><creatorcontrib>Morabito, Francesco C.</creatorcontrib><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;p &lt; 0.05 &lt;/tex-math&gt;&lt;/inline-formula&gt;), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</description><subject>Alzheimer's disease</subject><subject>Alzheimer’s Disease (AD)</subject><subject>Brain</subject><subject>brain connectivity</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognitive ability</subject><subject>Coherence</subject><subject>Complexity theory</subject><subject>Connectivity</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Dementia</subject><subject>Density</subject><subject>EEG</subject><subject>Electrodes</subject><subject>electroencephalographic (EEG)</subject><subject>Electroencephalography</subject><subject>Evaluation</subject><subject>hierarchical clustering (HC)</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>mild cognitive impairment (MCI)</subject><subject>network density</subject><subject>Neural networks</subject><subject>Nonlinear analysis</subject><subject>Optical wavelength conversion</subject><subject>Patients</subject><subject>permutation entropy (PE)</subject><subject>permutation Jaccard distance (PJD)</subject><subject>Permutations</subject><subject>Signal processing</subject><subject>Strength</subject><subject>Wavelet analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuEzEURS0EolXpD4CELLFhM8HP43jsJaShLUoDUovEzvLYb8BhMtPaHkH_HoeELHgbW_K5V08-hLwENgNg-t3der26nXEGasYbDVKIJ-SUg-QVr5V6erw3307IeUobVkayuRT6OTnhWmshuDolv79g3E7Z5jAO9JN1zkZPL0LKdnBYfbAJPb0KGG10P4KzPV30U8oYw_Cd5pEuUw5bm5Eul5d0jfnXGH_SCxxSyI_0ZvShK6Fdd6JhoDeLa3o7tRt0Ob0gzzrbJzw_nGfk68fl3eKqWn2-vF68X1VOQJMr5bXEuW27FgSylilohRW11ErXvtbOS8U4rz1wjnM55x122nZlGosdOl-fkbf73vs4PkyYstmG5LDv7YDjlAxnUtUCJGMFffMfuhmnOJTtDAdooGkaqQvF95SLY0oRO3Mfyx_ERwPM7NSYv2rMTo05qCmh14fqqd2iP0b-iSjAqz0QEPH4rLgCBlD_AeRkk3M</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Mammone, Nadia</creator><creator>Ieracitano, Cosimo</creator><creator>Adeli, Hojjat</creator><creator>Bramanti, Alessia</creator><creator>Morabito, Francesco C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0734-9136</orcidid><orcidid>https://orcid.org/0000-0003-4962-3500</orcidid><orcidid>https://orcid.org/0000-0001-5718-1453</orcidid><orcidid>https://orcid.org/0000-0001-7890-2897</orcidid></search><sort><creationdate>20181001</creationdate><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><author>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer's disease</topic><topic>Alzheimer’s Disease (AD)</topic><topic>Brain</topic><topic>brain connectivity</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognitive ability</topic><topic>Coherence</topic><topic>Complexity theory</topic><topic>Connectivity</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Dementia</topic><topic>Density</topic><topic>EEG</topic><topic>Electrodes</topic><topic>electroencephalographic (EEG)</topic><topic>Electroencephalography</topic><topic>Evaluation</topic><topic>hierarchical clustering (HC)</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>mild cognitive impairment (MCI)</topic><topic>network density</topic><topic>Neural networks</topic><topic>Nonlinear analysis</topic><topic>Optical wavelength conversion</topic><topic>Patients</topic><topic>permutation entropy (PE)</topic><topic>permutation Jaccard distance (PJD)</topic><topic>Permutations</topic><topic>Signal processing</topic><topic>Strength</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mammone, Nadia</creatorcontrib><creatorcontrib>Ieracitano, Cosimo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><creatorcontrib>Bramanti, Alessia</creatorcontrib><creatorcontrib>Morabito, Francesco C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mammone, Nadia</au><au>Ieracitano, Cosimo</au><au>Adeli, Hojjat</au><au>Bramanti, Alessia</au><au>Morabito, Francesco C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>10</issue><spage>5122</spage><epage>5135</epage><pages>5122-5135</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;p &lt; 0.05 &lt;/tex-math&gt;&lt;/inline-formula&gt;), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994428</pmid><doi>10.1109/TNNLS.2018.2791644</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0734-9136</orcidid><orcidid>https://orcid.org/0000-0003-4962-3500</orcidid><orcidid>https://orcid.org/0000-0001-5718-1453</orcidid><orcidid>https://orcid.org/0000-0001-7890-2897</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-10, Vol.29 (10), p.5122-5135
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_29994428
source IEEE Electronic Library (IEL)
subjects Alzheimer's disease
Alzheimer’s Disease (AD)
Brain
brain connectivity
Cluster analysis
Clustering
Cognitive ability
Coherence
Complexity theory
Connectivity
Coupling
Couplings
Dementia
Density
EEG
Electrodes
electroencephalographic (EEG)
Electroencephalography
Evaluation
hierarchical clustering (HC)
Information processing
Learning algorithms
Machine learning
mild cognitive impairment (MCI)
network density
Neural networks
Nonlinear analysis
Optical wavelength conversion
Patients
permutation entropy (PE)
permutation Jaccard distance (PJD)
Permutations
Signal processing
Strength
Wavelet analysis
title Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutation%20Jaccard%20Distance-Based%20Hierarchical%20Clustering%20to%20Estimate%20EEG%20Network%20Density%20Modifications%20in%20MCI%20Subjects&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mammone,%20Nadia&rft.date=2018-10-01&rft.volume=29&rft.issue=10&rft.spage=5122&rft.epage=5135&rft.pages=5122-5135&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2791644&rft_dat=%3Cproquest_RIE%3E2068341600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117177769&rft_id=info:pmid/29994428&rft_ieee_id=8281011&rfr_iscdi=true