Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the co...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-10, Vol.29 (10), p.5122-5135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5135 |
---|---|
container_issue | 10 |
container_start_page | 5122 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 29 |
creator | Mammone, Nadia Ieracitano, Cosimo Adeli, Hojjat Bramanti, Alessia Morabito, Francesco C. |
description | In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD ( p < 0.05 ), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals. |
doi_str_mv | 10.1109/TNNLS.2018.2791644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29994428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8281011</ieee_id><sourcerecordid>2068341600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</originalsourceid><addsrcrecordid>eNpdkcFuEzEURS0EolXpD4CELLFhM8HP43jsJaShLUoDUovEzvLYb8BhMtPaHkH_HoeELHgbW_K5V08-hLwENgNg-t3der26nXEGasYbDVKIJ-SUg-QVr5V6erw3307IeUobVkayuRT6OTnhWmshuDolv79g3E7Z5jAO9JN1zkZPL0LKdnBYfbAJPb0KGG10P4KzPV30U8oYw_Cd5pEuUw5bm5Eul5d0jfnXGH_SCxxSyI_0ZvShK6Fdd6JhoDeLa3o7tRt0Ob0gzzrbJzw_nGfk68fl3eKqWn2-vF68X1VOQJMr5bXEuW27FgSylilohRW11ErXvtbOS8U4rz1wjnM55x122nZlGosdOl-fkbf73vs4PkyYstmG5LDv7YDjlAxnUtUCJGMFffMfuhmnOJTtDAdooGkaqQvF95SLY0oRO3Mfyx_ERwPM7NSYv2rMTo05qCmh14fqqd2iP0b-iSjAqz0QEPH4rLgCBlD_AeRkk3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117177769</pqid></control><display><type>article</type><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><source>IEEE Electronic Library (IEL)</source><creator>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</creator><creatorcontrib>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</creatorcontrib><description>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2791644</identifier><identifier>PMID: 29994428</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Alzheimer’s Disease (AD) ; Brain ; brain connectivity ; Cluster analysis ; Clustering ; Cognitive ability ; Coherence ; Complexity theory ; Connectivity ; Coupling ; Couplings ; Dementia ; Density ; EEG ; Electrodes ; electroencephalographic (EEG) ; Electroencephalography ; Evaluation ; hierarchical clustering (HC) ; Information processing ; Learning algorithms ; Machine learning ; mild cognitive impairment (MCI) ; network density ; Neural networks ; Nonlinear analysis ; Optical wavelength conversion ; Patients ; permutation entropy (PE) ; permutation Jaccard distance (PJD) ; Permutations ; Signal processing ; Strength ; Wavelet analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-10, Vol.29 (10), p.5122-5135</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</citedby><cites>FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</cites><orcidid>0000-0003-0734-9136 ; 0000-0003-4962-3500 ; 0000-0001-5718-1453 ; 0000-0001-7890-2897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8281011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8281011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mammone, Nadia</creatorcontrib><creatorcontrib>Ieracitano, Cosimo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><creatorcontrib>Bramanti, Alessia</creatorcontrib><creatorcontrib>Morabito, Francesco C.</creatorcontrib><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</description><subject>Alzheimer's disease</subject><subject>Alzheimer’s Disease (AD)</subject><subject>Brain</subject><subject>brain connectivity</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognitive ability</subject><subject>Coherence</subject><subject>Complexity theory</subject><subject>Connectivity</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Dementia</subject><subject>Density</subject><subject>EEG</subject><subject>Electrodes</subject><subject>electroencephalographic (EEG)</subject><subject>Electroencephalography</subject><subject>Evaluation</subject><subject>hierarchical clustering (HC)</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>mild cognitive impairment (MCI)</subject><subject>network density</subject><subject>Neural networks</subject><subject>Nonlinear analysis</subject><subject>Optical wavelength conversion</subject><subject>Patients</subject><subject>permutation entropy (PE)</subject><subject>permutation Jaccard distance (PJD)</subject><subject>Permutations</subject><subject>Signal processing</subject><subject>Strength</subject><subject>Wavelet analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuEzEURS0EolXpD4CELLFhM8HP43jsJaShLUoDUovEzvLYb8BhMtPaHkH_HoeELHgbW_K5V08-hLwENgNg-t3der26nXEGasYbDVKIJ-SUg-QVr5V6erw3307IeUobVkayuRT6OTnhWmshuDolv79g3E7Z5jAO9JN1zkZPL0LKdnBYfbAJPb0KGG10P4KzPV30U8oYw_Cd5pEuUw5bm5Eul5d0jfnXGH_SCxxSyI_0ZvShK6Fdd6JhoDeLa3o7tRt0Ob0gzzrbJzw_nGfk68fl3eKqWn2-vF68X1VOQJMr5bXEuW27FgSylilohRW11ErXvtbOS8U4rz1wjnM55x122nZlGosdOl-fkbf73vs4PkyYstmG5LDv7YDjlAxnUtUCJGMFffMfuhmnOJTtDAdooGkaqQvF95SLY0oRO3Mfyx_ERwPM7NSYv2rMTo05qCmh14fqqd2iP0b-iSjAqz0QEPH4rLgCBlD_AeRkk3M</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Mammone, Nadia</creator><creator>Ieracitano, Cosimo</creator><creator>Adeli, Hojjat</creator><creator>Bramanti, Alessia</creator><creator>Morabito, Francesco C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0734-9136</orcidid><orcidid>https://orcid.org/0000-0003-4962-3500</orcidid><orcidid>https://orcid.org/0000-0001-5718-1453</orcidid><orcidid>https://orcid.org/0000-0001-7890-2897</orcidid></search><sort><creationdate>20181001</creationdate><title>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</title><author>Mammone, Nadia ; Ieracitano, Cosimo ; Adeli, Hojjat ; Bramanti, Alessia ; Morabito, Francesco C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8d96e5abfb14e0b081b4a4369893d39cd680223d122e5652fef9affff7aefecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer's disease</topic><topic>Alzheimer’s Disease (AD)</topic><topic>Brain</topic><topic>brain connectivity</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognitive ability</topic><topic>Coherence</topic><topic>Complexity theory</topic><topic>Connectivity</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Dementia</topic><topic>Density</topic><topic>EEG</topic><topic>Electrodes</topic><topic>electroencephalographic (EEG)</topic><topic>Electroencephalography</topic><topic>Evaluation</topic><topic>hierarchical clustering (HC)</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>mild cognitive impairment (MCI)</topic><topic>network density</topic><topic>Neural networks</topic><topic>Nonlinear analysis</topic><topic>Optical wavelength conversion</topic><topic>Patients</topic><topic>permutation entropy (PE)</topic><topic>permutation Jaccard distance (PJD)</topic><topic>Permutations</topic><topic>Signal processing</topic><topic>Strength</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mammone, Nadia</creatorcontrib><creatorcontrib>Ieracitano, Cosimo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><creatorcontrib>Bramanti, Alessia</creatorcontrib><creatorcontrib>Morabito, Francesco C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mammone, Nadia</au><au>Ieracitano, Cosimo</au><au>Adeli, Hojjat</au><au>Bramanti, Alessia</au><au>Morabito, Francesco C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>10</issue><spage>5122</spage><epage>5135</epage><pages>5122-5135</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>), i.e., a reduced overall coupling strength, specifically in delta and theta bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, theta, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994428</pmid><doi>10.1109/TNNLS.2018.2791644</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0734-9136</orcidid><orcidid>https://orcid.org/0000-0003-4962-3500</orcidid><orcidid>https://orcid.org/0000-0001-5718-1453</orcidid><orcidid>https://orcid.org/0000-0001-7890-2897</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2018-10, Vol.29 (10), p.5122-5135 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_29994428 |
source | IEEE Electronic Library (IEL) |
subjects | Alzheimer's disease Alzheimer’s Disease (AD) Brain brain connectivity Cluster analysis Clustering Cognitive ability Coherence Complexity theory Connectivity Coupling Couplings Dementia Density EEG Electrodes electroencephalographic (EEG) Electroencephalography Evaluation hierarchical clustering (HC) Information processing Learning algorithms Machine learning mild cognitive impairment (MCI) network density Neural networks Nonlinear analysis Optical wavelength conversion Patients permutation entropy (PE) permutation Jaccard distance (PJD) Permutations Signal processing Strength Wavelet analysis |
title | Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permutation%20Jaccard%20Distance-Based%20Hierarchical%20Clustering%20to%20Estimate%20EEG%20Network%20Density%20Modifications%20in%20MCI%20Subjects&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mammone,%20Nadia&rft.date=2018-10-01&rft.volume=29&rft.issue=10&rft.spage=5122&rft.epage=5135&rft.pages=5122-5135&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2791644&rft_dat=%3Cproquest_RIE%3E2068341600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117177769&rft_id=info:pmid/29994428&rft_ieee_id=8281011&rfr_iscdi=true |