Hallucinating Face Image by Regularization Models in High-Resolution Feature Space
In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consist...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-06, Vol.27 (6), p.2980-2995 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2995 |
---|---|
container_issue | 6 |
container_start_page | 2980 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Shi, Jingang Liu, Xin Zong, Yuan Qi, Chun Zhao, Guoying |
description | In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods. |
doi_str_mv | 10.1109/TIP.2018.2813163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29994064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8310603</ieee_id><sourcerecordid>2068340754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1Jrv52KOItYWKUus5bJLZGMlHzSaH-uvd2trTDLzPOzAPY9cIU0RQ9-vF29QHjKd-jAJDccLGqCR6ANI_dTsEkRehVCN2Ye0XAMoAw3M28pVSEkI5Zqu5rqohKxvdl03BZzojvqh1QTzd8hUVQ6W78seFbcNf2pwqy8uGz8vi01uRbavhL5mR7oeO-PvG9S_ZmdGVpavDnLCP2dP6ce4tX58Xjw9LLxOoes-YSJMWfqARDZowDcBPIUspACVSkJEwGUWholSpIM_9yH1olDQYRLDriQm729_ddO33QLZP6tJmVFW6oXawiQ9hLCREgXQo7NGsa63tyCSbrqx1t00Qkp3JxJlMdiaTg0lXuT1cH9Ka8mPhX50DbvZASUTHOBYIIQjxC6vdduM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068340754</pqid></control><display><type>article</type><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</creator><creatorcontrib>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</creatorcontrib><description>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2813163</identifier><identifier>PMID: 29994064</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Face ; Face hallucination ; Geometry ; Image edge detection ; Image reconstruction ; Image resolution ; Kernel ; kernel method ; manifold learning ; regularization framework ; super-resolution ; Training</subject><ispartof>IEEE transactions on image processing, 2018-06, Vol.27 (6), p.2980-2995</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</citedby><cites>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</cites><orcidid>0000-0001-7070-6365 ; 0000-0002-0839-8792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8310603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8310603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><creatorcontrib>Zhao, Guoying</creatorcontrib><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</description><subject>Face</subject><subject>Face hallucination</subject><subject>Geometry</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>kernel method</subject><subject>manifold learning</subject><subject>regularization framework</subject><subject>super-resolution</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1Jrv52KOItYWKUus5bJLZGMlHzSaH-uvd2trTDLzPOzAPY9cIU0RQ9-vF29QHjKd-jAJDccLGqCR6ANI_dTsEkRehVCN2Ye0XAMoAw3M28pVSEkI5Zqu5rqohKxvdl03BZzojvqh1QTzd8hUVQ6W78seFbcNf2pwqy8uGz8vi01uRbavhL5mR7oeO-PvG9S_ZmdGVpavDnLCP2dP6ce4tX58Xjw9LLxOoes-YSJMWfqARDZowDcBPIUspACVSkJEwGUWholSpIM_9yH1olDQYRLDriQm729_ddO33QLZP6tJmVFW6oXawiQ9hLCREgXQo7NGsa63tyCSbrqx1t00Qkp3JxJlMdiaTg0lXuT1cH9Ka8mPhX50DbvZASUTHOBYIIQjxC6vdduM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Shi, Jingang</creator><creator>Liu, Xin</creator><creator>Zong, Yuan</creator><creator>Qi, Chun</creator><creator>Zhao, Guoying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid></search><sort><creationdate>20180601</creationdate><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><author>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Face</topic><topic>Face hallucination</topic><topic>Geometry</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>kernel method</topic><topic>manifold learning</topic><topic>regularization framework</topic><topic>super-resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><creatorcontrib>Zhao, Guoying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jingang</au><au>Liu, Xin</au><au>Zong, Yuan</au><au>Qi, Chun</au><au>Zhao, Guoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>27</volume><issue>6</issue><spage>2980</spage><epage>2995</epage><pages>2980-2995</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994064</pmid><doi>10.1109/TIP.2018.2813163</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-06, Vol.27 (6), p.2980-2995 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_29994064 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Face Face hallucination Geometry Image edge detection Image reconstruction Image resolution Kernel kernel method manifold learning regularization framework super-resolution Training |
title | Hallucinating Face Image by Regularization Models in High-Resolution Feature Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hallucinating%20Face%20Image%20by%20Regularization%20Models%20in%20High-Resolution%20Feature%20Space&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shi,%20Jingang&rft.date=2018-06-01&rft.volume=27&rft.issue=6&rft.spage=2980&rft.epage=2995&rft.pages=2980-2995&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2813163&rft_dat=%3Cproquest_RIE%3E2068340754%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068340754&rft_id=info:pmid/29994064&rft_ieee_id=8310603&rfr_iscdi=true |