Hallucinating Face Image by Regularization Models in High-Resolution Feature Space

In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-06, Vol.27 (6), p.2980-2995
Hauptverfasser: Shi, Jingang, Liu, Xin, Zong, Yuan, Qi, Chun, Zhao, Guoying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2995
container_issue 6
container_start_page 2980
container_title IEEE transactions on image processing
container_volume 27
creator Shi, Jingang
Liu, Xin
Zong, Yuan
Qi, Chun
Zhao, Guoying
description In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.
doi_str_mv 10.1109/TIP.2018.2813163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29994064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8310603</ieee_id><sourcerecordid>2068340754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1Jrv52KOItYWKUus5bJLZGMlHzSaH-uvd2trTDLzPOzAPY9cIU0RQ9-vF29QHjKd-jAJDccLGqCR6ANI_dTsEkRehVCN2Ye0XAMoAw3M28pVSEkI5Zqu5rqohKxvdl03BZzojvqh1QTzd8hUVQ6W78seFbcNf2pwqy8uGz8vi01uRbavhL5mR7oeO-PvG9S_ZmdGVpavDnLCP2dP6ce4tX58Xjw9LLxOoes-YSJMWfqARDZowDcBPIUspACVSkJEwGUWholSpIM_9yH1olDQYRLDriQm729_ddO33QLZP6tJmVFW6oXawiQ9hLCREgXQo7NGsa63tyCSbrqx1t00Qkp3JxJlMdiaTg0lXuT1cH9Ka8mPhX50DbvZASUTHOBYIIQjxC6vdduM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068340754</pqid></control><display><type>article</type><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</creator><creatorcontrib>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</creatorcontrib><description>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2813163</identifier><identifier>PMID: 29994064</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Face ; Face hallucination ; Geometry ; Image edge detection ; Image reconstruction ; Image resolution ; Kernel ; kernel method ; manifold learning ; regularization framework ; super-resolution ; Training</subject><ispartof>IEEE transactions on image processing, 2018-06, Vol.27 (6), p.2980-2995</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</citedby><cites>FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</cites><orcidid>0000-0001-7070-6365 ; 0000-0002-0839-8792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8310603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8310603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><creatorcontrib>Zhao, Guoying</creatorcontrib><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</description><subject>Face</subject><subject>Face hallucination</subject><subject>Geometry</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>kernel method</subject><subject>manifold learning</subject><subject>regularization framework</subject><subject>super-resolution</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1Jrv52KOItYWKUus5bJLZGMlHzSaH-uvd2trTDLzPOzAPY9cIU0RQ9-vF29QHjKd-jAJDccLGqCR6ANI_dTsEkRehVCN2Ye0XAMoAw3M28pVSEkI5Zqu5rqohKxvdl03BZzojvqh1QTzd8hUVQ6W78seFbcNf2pwqy8uGz8vi01uRbavhL5mR7oeO-PvG9S_ZmdGVpavDnLCP2dP6ce4tX58Xjw9LLxOoes-YSJMWfqARDZowDcBPIUspACVSkJEwGUWholSpIM_9yH1olDQYRLDriQm729_ddO33QLZP6tJmVFW6oXawiQ9hLCREgXQo7NGsa63tyCSbrqx1t00Qkp3JxJlMdiaTg0lXuT1cH9Ka8mPhX50DbvZASUTHOBYIIQjxC6vdduM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Shi, Jingang</creator><creator>Liu, Xin</creator><creator>Zong, Yuan</creator><creator>Qi, Chun</creator><creator>Zhao, Guoying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid></search><sort><creationdate>20180601</creationdate><title>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</title><author>Shi, Jingang ; Liu, Xin ; Zong, Yuan ; Qi, Chun ; Zhao, Guoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ff7aea325a11f1f6b502b0cbe5093b0473fce769eb995dd27131f94f1570ea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Face</topic><topic>Face hallucination</topic><topic>Geometry</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>kernel method</topic><topic>manifold learning</topic><topic>regularization framework</topic><topic>super-resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jingang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zong, Yuan</creatorcontrib><creatorcontrib>Qi, Chun</creatorcontrib><creatorcontrib>Zhao, Guoying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jingang</au><au>Liu, Xin</au><au>Zong, Yuan</au><au>Qi, Chun</au><au>Zhao, Guoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hallucinating Face Image by Regularization Models in High-Resolution Feature Space</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>27</volume><issue>6</issue><spage>2980</spage><epage>2995</epage><pages>2980-2995</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994064</pmid><doi>10.1109/TIP.2018.2813163</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7070-6365</orcidid><orcidid>https://orcid.org/0000-0002-0839-8792</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-06, Vol.27 (6), p.2980-2995
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_29994064
source IEEE/IET Electronic Library (IEL)
subjects Face
Face hallucination
Geometry
Image edge detection
Image reconstruction
Image resolution
Kernel
kernel method
manifold learning
regularization framework
super-resolution
Training
title Hallucinating Face Image by Regularization Models in High-Resolution Feature Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hallucinating%20Face%20Image%20by%20Regularization%20Models%20in%20High-Resolution%20Feature%20Space&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shi,%20Jingang&rft.date=2018-06-01&rft.volume=27&rft.issue=6&rft.spage=2980&rft.epage=2995&rft.pages=2980-2995&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2813163&rft_dat=%3Cproquest_RIE%3E2068340754%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068340754&rft_id=info:pmid/29994064&rft_ieee_id=8310603&rfr_iscdi=true