Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study
Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound pro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1181 |
---|---|
container_issue | 7 |
container_start_page | 1166 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 65 |
creator | Fekkes, Stein Saris, Anne E. C. M. Nillesen, Maartje M. Menssen, Jan Hansen, Hendrik H. G. de Korte, Chris L. |
description | Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended. |
doi_str_mv | 10.1109/TUFFC.2018.2834724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29993371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8356672</ieee_id><sourcerecordid>2068341688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhi0EomnhBUBClrj0ssEerzc2txIRWqkSldqU48rrtVNXXru1dyvlTXhcnCZUiIvnMN_8v2d-hD5QMqeUyC8369VqOQdCxRwEqxdQv0IzyoFXQnL-Gs2IELxihJIjdJzzPSG0riW8RUcgpWRsQWfo97UbJj-qYOKU8a3KevIq4esxKRewCj3-5mPs8a3RY0yl-KjduMUXg9q4sMHrvHvP3eauWiXzOJmgt4VKuagtY3gyYXQxKP9P98oXN_xLPRm89sUnxyn0X_EZvrpTYYxDMZ_67Tv0xiqfzftDPUHr1feb5Xl1-fPHxfLsstJM8rFShJuOaAtAmRWiZ5ywjtuaSMptx2yjgMqmt2XhzkqoSQ-GEw4WdKcZadgJOt3rPqRYPpjHdnBZG-_3J2mBNOW2tBGioJ__Q-_jlMpyzxStQYiaFwr2lE4x52Rs-5DcoNK2paTd5dY-59bucmsPuZWhTwfpqRtM_zLyN6gCfNwDzhjz0haMN80C2B9i-p3p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061428845</pqid></control><display><type>article</type><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</creator><creatorcontrib>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</creatorcontrib><description>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2834724</identifier><identifier>PMID: 29993371</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Arteries ; Attenuation ; Bifurcations ; Blood ; Blood flow ; Blood Flow Velocity - physiology ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - physiology ; Displacement estimation ; Equipment Design ; Estimation ; flow estimation ; Flow velocity ; high-frequency ultrasound ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Male ; Medical imaging ; Models, Cardiovascular ; Phantoms, Imaging ; plane wave ultrasound ; Plane waves ; Plaque, Atherosclerotic - diagnostic imaging ; Plaque, Atherosclerotic - physiopathology ; Polyvinyl Alcohol ; polyvinyl alcohol (PVA) phantom ; Quantitative analysis ; Strain ; strain imaging ; Transducers ; Ultrasonic imaging ; Ultrasonography - instrumentation ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</citedby><cites>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</cites><orcidid>0000-0002-1987-6948 ; 0000-0002-9955-0795 ; 0000-0001-5860-8981 ; 0000-0002-3402-3302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8356672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8356672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fekkes, Stein</creatorcontrib><creatorcontrib>Saris, Anne E. C. M.</creatorcontrib><creatorcontrib>Nillesen, Maartje M.</creatorcontrib><creatorcontrib>Menssen, Jan</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>de Korte, Chris L.</creatorcontrib><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</description><subject>Aged</subject><subject>Arteries</subject><subject>Attenuation</subject><subject>Bifurcations</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - physiology</subject><subject>Displacement estimation</subject><subject>Equipment Design</subject><subject>Estimation</subject><subject>flow estimation</subject><subject>Flow velocity</subject><subject>high-frequency ultrasound</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Models, Cardiovascular</subject><subject>Phantoms, Imaging</subject><subject>plane wave ultrasound</subject><subject>Plane waves</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Plaque, Atherosclerotic - physiopathology</subject><subject>Polyvinyl Alcohol</subject><subject>polyvinyl alcohol (PVA) phantom</subject><subject>Quantitative analysis</subject><subject>Strain</subject><subject>strain imaging</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkcFuEzEQhi0EomnhBUBClrj0ssEerzc2txIRWqkSldqU48rrtVNXXru1dyvlTXhcnCZUiIvnMN_8v2d-hD5QMqeUyC8369VqOQdCxRwEqxdQv0IzyoFXQnL-Gs2IELxihJIjdJzzPSG0riW8RUcgpWRsQWfo97UbJj-qYOKU8a3KevIq4esxKRewCj3-5mPs8a3RY0yl-KjduMUXg9q4sMHrvHvP3eauWiXzOJmgt4VKuagtY3gyYXQxKP9P98oXN_xLPRm89sUnxyn0X_EZvrpTYYxDMZ_67Tv0xiqfzftDPUHr1feb5Xl1-fPHxfLsstJM8rFShJuOaAtAmRWiZ5ywjtuaSMptx2yjgMqmt2XhzkqoSQ-GEw4WdKcZadgJOt3rPqRYPpjHdnBZG-_3J2mBNOW2tBGioJ__Q-_jlMpyzxStQYiaFwr2lE4x52Rs-5DcoNK2paTd5dY-59bucmsPuZWhTwfpqRtM_zLyN6gCfNwDzhjz0haMN80C2B9i-p3p</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Fekkes, Stein</creator><creator>Saris, Anne E. C. M.</creator><creator>Nillesen, Maartje M.</creator><creator>Menssen, Jan</creator><creator>Hansen, Hendrik H. G.</creator><creator>de Korte, Chris L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1987-6948</orcidid><orcidid>https://orcid.org/0000-0002-9955-0795</orcidid><orcidid>https://orcid.org/0000-0001-5860-8981</orcidid><orcidid>https://orcid.org/0000-0002-3402-3302</orcidid></search><sort><creationdate>20180701</creationdate><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><author>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Arteries</topic><topic>Attenuation</topic><topic>Bifurcations</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - physiology</topic><topic>Displacement estimation</topic><topic>Equipment Design</topic><topic>Estimation</topic><topic>flow estimation</topic><topic>Flow velocity</topic><topic>high-frequency ultrasound</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Models, Cardiovascular</topic><topic>Phantoms, Imaging</topic><topic>plane wave ultrasound</topic><topic>Plane waves</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Plaque, Atherosclerotic - physiopathology</topic><topic>Polyvinyl Alcohol</topic><topic>polyvinyl alcohol (PVA) phantom</topic><topic>Quantitative analysis</topic><topic>Strain</topic><topic>strain imaging</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fekkes, Stein</creatorcontrib><creatorcontrib>Saris, Anne E. C. M.</creatorcontrib><creatorcontrib>Nillesen, Maartje M.</creatorcontrib><creatorcontrib>Menssen, Jan</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>de Korte, Chris L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fekkes, Stein</au><au>Saris, Anne E. C. M.</au><au>Nillesen, Maartje M.</au><au>Menssen, Jan</au><au>Hansen, Hendrik H. G.</au><au>de Korte, Chris L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>65</volume><issue>7</issue><spage>1166</spage><epage>1181</epage><pages>1166-1181</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993371</pmid><doi>10.1109/TUFFC.2018.2834724</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1987-6948</orcidid><orcidid>https://orcid.org/0000-0002-9955-0795</orcidid><orcidid>https://orcid.org/0000-0001-5860-8981</orcidid><orcidid>https://orcid.org/0000-0002-3402-3302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_pubmed_primary_29993371 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Aged Arteries Attenuation Bifurcations Blood Blood flow Blood Flow Velocity - physiology Carotid Arteries - diagnostic imaging Carotid Arteries - physiology Displacement estimation Equipment Design Estimation flow estimation Flow velocity high-frequency ultrasound Humans Image Processing, Computer-Assisted - methods Imaging Male Medical imaging Models, Cardiovascular Phantoms, Imaging plane wave ultrasound Plane waves Plaque, Atherosclerotic - diagnostic imaging Plaque, Atherosclerotic - physiopathology Polyvinyl Alcohol polyvinyl alcohol (PVA) phantom Quantitative analysis Strain strain imaging Transducers Ultrasonic imaging Ultrasonography - instrumentation Ultrasonography - methods |
title | Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Vascular%20Strain%20and%20Blood%20Vector%20Velocity%20Imaging%20Using%20High-Frequency%20Versus%20Conventional-Frequency%20Plane%20Wave%20Ultrasound:%20A%20Phantom%20Study&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Fekkes,%20Stein&rft.date=2018-07-01&rft.volume=65&rft.issue=7&rft.spage=1166&rft.epage=1181&rft.pages=1166-1181&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2834724&rft_dat=%3Cproquest_RIE%3E2068341688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061428845&rft_id=info:pmid/29993371&rft_ieee_id=8356672&rfr_iscdi=true |