Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study

Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181
Hauptverfasser: Fekkes, Stein, Saris, Anne E. C. M., Nillesen, Maartje M., Menssen, Jan, Hansen, Hendrik H. G., de Korte, Chris L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1181
container_issue 7
container_start_page 1166
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 65
creator Fekkes, Stein
Saris, Anne E. C. M.
Nillesen, Maartje M.
Menssen, Jan
Hansen, Hendrik H. G.
de Korte, Chris L.
description Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.
doi_str_mv 10.1109/TUFFC.2018.2834724
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29993371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8356672</ieee_id><sourcerecordid>2068341688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhi0EomnhBUBClrj0ssEerzc2txIRWqkSldqU48rrtVNXXru1dyvlTXhcnCZUiIvnMN_8v2d-hD5QMqeUyC8369VqOQdCxRwEqxdQv0IzyoFXQnL-Gs2IELxihJIjdJzzPSG0riW8RUcgpWRsQWfo97UbJj-qYOKU8a3KevIq4esxKRewCj3-5mPs8a3RY0yl-KjduMUXg9q4sMHrvHvP3eauWiXzOJmgt4VKuagtY3gyYXQxKP9P98oXN_xLPRm89sUnxyn0X_EZvrpTYYxDMZ_67Tv0xiqfzftDPUHr1feb5Xl1-fPHxfLsstJM8rFShJuOaAtAmRWiZ5ywjtuaSMptx2yjgMqmt2XhzkqoSQ-GEw4WdKcZadgJOt3rPqRYPpjHdnBZG-_3J2mBNOW2tBGioJ__Q-_jlMpyzxStQYiaFwr2lE4x52Rs-5DcoNK2paTd5dY-59bucmsPuZWhTwfpqRtM_zLyN6gCfNwDzhjz0haMN80C2B9i-p3p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061428845</pqid></control><display><type>article</type><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</creator><creatorcontrib>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</creatorcontrib><description>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2834724</identifier><identifier>PMID: 29993371</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Arteries ; Attenuation ; Bifurcations ; Blood ; Blood flow ; Blood Flow Velocity - physiology ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - physiology ; Displacement estimation ; Equipment Design ; Estimation ; flow estimation ; Flow velocity ; high-frequency ultrasound ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Male ; Medical imaging ; Models, Cardiovascular ; Phantoms, Imaging ; plane wave ultrasound ; Plane waves ; Plaque, Atherosclerotic - diagnostic imaging ; Plaque, Atherosclerotic - physiopathology ; Polyvinyl Alcohol ; polyvinyl alcohol (PVA) phantom ; Quantitative analysis ; Strain ; strain imaging ; Transducers ; Ultrasonic imaging ; Ultrasonography - instrumentation ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</citedby><cites>FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</cites><orcidid>0000-0002-1987-6948 ; 0000-0002-9955-0795 ; 0000-0001-5860-8981 ; 0000-0002-3402-3302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8356672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8356672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fekkes, Stein</creatorcontrib><creatorcontrib>Saris, Anne E. C. M.</creatorcontrib><creatorcontrib>Nillesen, Maartje M.</creatorcontrib><creatorcontrib>Menssen, Jan</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>de Korte, Chris L.</creatorcontrib><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</description><subject>Aged</subject><subject>Arteries</subject><subject>Attenuation</subject><subject>Bifurcations</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - physiology</subject><subject>Displacement estimation</subject><subject>Equipment Design</subject><subject>Estimation</subject><subject>flow estimation</subject><subject>Flow velocity</subject><subject>high-frequency ultrasound</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Models, Cardiovascular</subject><subject>Phantoms, Imaging</subject><subject>plane wave ultrasound</subject><subject>Plane waves</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Plaque, Atherosclerotic - physiopathology</subject><subject>Polyvinyl Alcohol</subject><subject>polyvinyl alcohol (PVA) phantom</subject><subject>Quantitative analysis</subject><subject>Strain</subject><subject>strain imaging</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkcFuEzEQhi0EomnhBUBClrj0ssEerzc2txIRWqkSldqU48rrtVNXXru1dyvlTXhcnCZUiIvnMN_8v2d-hD5QMqeUyC8369VqOQdCxRwEqxdQv0IzyoFXQnL-Gs2IELxihJIjdJzzPSG0riW8RUcgpWRsQWfo97UbJj-qYOKU8a3KevIq4esxKRewCj3-5mPs8a3RY0yl-KjduMUXg9q4sMHrvHvP3eauWiXzOJmgt4VKuagtY3gyYXQxKP9P98oXN_xLPRm89sUnxyn0X_EZvrpTYYxDMZ_67Tv0xiqfzftDPUHr1feb5Xl1-fPHxfLsstJM8rFShJuOaAtAmRWiZ5ywjtuaSMptx2yjgMqmt2XhzkqoSQ-GEw4WdKcZadgJOt3rPqRYPpjHdnBZG-_3J2mBNOW2tBGioJ__Q-_jlMpyzxStQYiaFwr2lE4x52Rs-5DcoNK2paTd5dY-59bucmsPuZWhTwfpqRtM_zLyN6gCfNwDzhjz0haMN80C2B9i-p3p</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Fekkes, Stein</creator><creator>Saris, Anne E. C. M.</creator><creator>Nillesen, Maartje M.</creator><creator>Menssen, Jan</creator><creator>Hansen, Hendrik H. G.</creator><creator>de Korte, Chris L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1987-6948</orcidid><orcidid>https://orcid.org/0000-0002-9955-0795</orcidid><orcidid>https://orcid.org/0000-0001-5860-8981</orcidid><orcidid>https://orcid.org/0000-0002-3402-3302</orcidid></search><sort><creationdate>20180701</creationdate><title>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</title><author>Fekkes, Stein ; Saris, Anne E. C. M. ; Nillesen, Maartje M. ; Menssen, Jan ; Hansen, Hendrik H. G. ; de Korte, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a05eb0cf2213f88d3503b5f40915fb3f6a2196df999bf9240d2e5052f2cbc3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Arteries</topic><topic>Attenuation</topic><topic>Bifurcations</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - physiology</topic><topic>Displacement estimation</topic><topic>Equipment Design</topic><topic>Estimation</topic><topic>flow estimation</topic><topic>Flow velocity</topic><topic>high-frequency ultrasound</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Models, Cardiovascular</topic><topic>Phantoms, Imaging</topic><topic>plane wave ultrasound</topic><topic>Plane waves</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Plaque, Atherosclerotic - physiopathology</topic><topic>Polyvinyl Alcohol</topic><topic>polyvinyl alcohol (PVA) phantom</topic><topic>Quantitative analysis</topic><topic>Strain</topic><topic>strain imaging</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fekkes, Stein</creatorcontrib><creatorcontrib>Saris, Anne E. C. M.</creatorcontrib><creatorcontrib>Nillesen, Maartje M.</creatorcontrib><creatorcontrib>Menssen, Jan</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>de Korte, Chris L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fekkes, Stein</au><au>Saris, Anne E. C. M.</au><au>Nillesen, Maartje M.</au><au>Menssen, Jan</au><au>Hansen, Hendrik H. G.</au><au>de Korte, Chris L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>65</volume><issue>7</issue><spage>1166</spage><epage>1181</epage><pages>1166-1181</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Plaque strain and blood vector velocity imaging of stenosed arteries are expected to aid in diagnosis and prevention of cerebrovascular disease. Ultrafast plane wave imaging enables simultaneous strain and velocity estimation. Multiple ultrasound vendors are introducing high-frequency ultrasound probes and systems. This paper investigates whether the use of high-frequency ultrafast ultrasound is beneficial for assessing blood velocities and strain in arteries. The performance of strain and blood flow velocity estimation was compared between a high-frequency transducer (MS250, fc = 21 MHz) and a clinically utilized transducer (L12-5, fc = 9 MHz). Quantitative analysis based on straight tube phantom experiments revealed that the MS250 outperformed the L12-5 in the superficial region: low velocities near the wall were more accurately estimated and wall strains were better resolved. At greater than 2-cm echo depth, the L12-5 performed better due to the high attenuation of the MS250 probe. Qualitative comparison using a perfused patient-specific carotid bifurcation phantom confirmed these findings. Thus, in conclusion, for strain and blood velocity estimation for depths up to ~2 cm, a high-frequency probe is recommended.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993371</pmid><doi>10.1109/TUFFC.2018.2834724</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1987-6948</orcidid><orcidid>https://orcid.org/0000-0002-9955-0795</orcidid><orcidid>https://orcid.org/0000-0001-5860-8981</orcidid><orcidid>https://orcid.org/0000-0002-3402-3302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-07, Vol.65 (7), p.1166-1181
issn 0885-3010
1525-8955
language eng
recordid cdi_pubmed_primary_29993371
source IEEE/IET Electronic Library (IEL)
subjects Aged
Arteries
Attenuation
Bifurcations
Blood
Blood flow
Blood Flow Velocity - physiology
Carotid Arteries - diagnostic imaging
Carotid Arteries - physiology
Displacement estimation
Equipment Design
Estimation
flow estimation
Flow velocity
high-frequency ultrasound
Humans
Image Processing, Computer-Assisted - methods
Imaging
Male
Medical imaging
Models, Cardiovascular
Phantoms, Imaging
plane wave ultrasound
Plane waves
Plaque, Atherosclerotic - diagnostic imaging
Plaque, Atherosclerotic - physiopathology
Polyvinyl Alcohol
polyvinyl alcohol (PVA) phantom
Quantitative analysis
Strain
strain imaging
Transducers
Ultrasonic imaging
Ultrasonography - instrumentation
Ultrasonography - methods
title Simultaneous Vascular Strain and Blood Vector Velocity Imaging Using High-Frequency Versus Conventional-Frequency Plane Wave Ultrasound: A Phantom Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Vascular%20Strain%20and%20Blood%20Vector%20Velocity%20Imaging%20Using%20High-Frequency%20Versus%20Conventional-Frequency%20Plane%20Wave%20Ultrasound:%20A%20Phantom%20Study&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Fekkes,%20Stein&rft.date=2018-07-01&rft.volume=65&rft.issue=7&rft.spage=1166&rft.epage=1181&rft.pages=1166-1181&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2834724&rft_dat=%3Cproquest_RIE%3E2068341688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061428845&rft_id=info:pmid/29993371&rft_ieee_id=8356672&rfr_iscdi=true