Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker
The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-04, Vol.27 (4), p.2022-2037 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2037 |
---|---|
container_issue | 4 |
container_start_page | 2022 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Xiangyuan Lan Shengping Zhang Yuen, Pong C. Chellappa, Rama |
description | The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker. |
doi_str_mv | 10.1109/TIP.2017.2777183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29989985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8119524</ieee_id><sourcerecordid>2068352045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6b11d72cf7d848083bd6c2dd1bc9d77cb02500df7253c96959086338313e73a63</originalsourceid><addsrcrecordid>eNo9kE1r3DAQhkVJ6Cbb3AuF4mMu3sxIliXllixNG9ikod2cjSyNi1t_RbID_ffxspuFgRmY530PD2OfEVaIYK62908rDqhWXCmFWnxgZ2gyTAEyfjLfIFWqMDMLdh7jXwDMJOYf2YIbo-eRZ8xtyIau7v4k675t-y6xnU_uyI5ToPT3QK6uapc82XGk0MXr5CZ57F-pSR6mZqyHZsfYECn9RUOgSN1ox7rv0lsbySfbYN0_Cp_YaWWbSBeHvWTPd9-26x_p5uf3-_XNJnUCzZjmJaJX3FXK60yDFqXPHfceS2e8Uq4ELgF8pbgUzuRGGtC5EFqgICVsLpbsct87hP5lojgWbR0dNY3tqJ9iwSHXQnLI5IzCHnWhjzFQVQyhbm34XyAUO7XFrLbYqS0OaufI10P7VLbkj4F3lzPwZQ_URHR8a0QjeSbeAMVKfJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068352045</pqid></control><display><type>article</type><title>Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker</title><source>IEEE Electronic Library (IEL)</source><creator>Xiangyuan Lan ; Shengping Zhang ; Yuen, Pong C. ; Chellappa, Rama</creator><creatorcontrib>Xiangyuan Lan ; Shengping Zhang ; Yuen, Pong C. ; Chellappa, Rama</creatorcontrib><description>The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2777183</identifier><identifier>PMID: 29989985</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Electronic mail ; Feature extraction ; feature fusion ; Lighting ; Measurement ; metric learning ; Robustness ; sparse representation ; Visual tracking ; Visualization</subject><ispartof>IEEE transactions on image processing, 2018-04, Vol.27 (4), p.2022-2037</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6b11d72cf7d848083bd6c2dd1bc9d77cb02500df7253c96959086338313e73a63</citedby><cites>FETCH-LOGICAL-c319t-6b11d72cf7d848083bd6c2dd1bc9d77cb02500df7253c96959086338313e73a63</cites><orcidid>0000-0001-8564-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8119524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8119524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiangyuan Lan</creatorcontrib><creatorcontrib>Shengping Zhang</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><title>Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.</description><subject>Adaptation models</subject><subject>Electronic mail</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Lighting</subject><subject>Measurement</subject><subject>metric learning</subject><subject>Robustness</subject><subject>sparse representation</subject><subject>Visual tracking</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1r3DAQhkVJ6Cbb3AuF4mMu3sxIliXllixNG9ikod2cjSyNi1t_RbID_ffxspuFgRmY530PD2OfEVaIYK62908rDqhWXCmFWnxgZ2gyTAEyfjLfIFWqMDMLdh7jXwDMJOYf2YIbo-eRZ8xtyIau7v4k675t-y6xnU_uyI5ToPT3QK6uapc82XGk0MXr5CZ57F-pSR6mZqyHZsfYECn9RUOgSN1ox7rv0lsbySfbYN0_Cp_YaWWbSBeHvWTPd9-26x_p5uf3-_XNJnUCzZjmJaJX3FXK60yDFqXPHfceS2e8Uq4ELgF8pbgUzuRGGtC5EFqgICVsLpbsct87hP5lojgWbR0dNY3tqJ9iwSHXQnLI5IzCHnWhjzFQVQyhbm34XyAUO7XFrLbYqS0OaufI10P7VLbkj4F3lzPwZQ_URHR8a0QjeSbeAMVKfJc</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Xiangyuan Lan</creator><creator>Shengping Zhang</creator><creator>Yuen, Pong C.</creator><creator>Chellappa, Rama</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></search><sort><creationdate>201804</creationdate><title>Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker</title><author>Xiangyuan Lan ; Shengping Zhang ; Yuen, Pong C. ; Chellappa, Rama</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6b11d72cf7d848083bd6c2dd1bc9d77cb02500df7253c96959086338313e73a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Electronic mail</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Lighting</topic><topic>Measurement</topic><topic>metric learning</topic><topic>Robustness</topic><topic>sparse representation</topic><topic>Visual tracking</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiangyuan Lan</creatorcontrib><creatorcontrib>Shengping Zhang</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Chellappa, Rama</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiangyuan Lan</au><au>Shengping Zhang</au><au>Yuen, Pong C.</au><au>Chellappa, Rama</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-04</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>2022</spage><epage>2037</epage><pages>2022-2037</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29989985</pmid><doi>10.1109/TIP.2017.2777183</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-04, Vol.27 (4), p.2022-2037 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_29989985 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Electronic mail Feature extraction feature fusion Lighting Measurement metric learning Robustness sparse representation Visual tracking Visualization |
title | Learning Common and Feature-Specific Patterns: A Novel Multiple-Sparse-Representation-Based Tracker |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Common%20and%20Feature-Specific%20Patterns:%20A%20Novel%20Multiple-Sparse-Representation-Based%20Tracker&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xiangyuan%20Lan&rft.date=2018-04&rft.volume=27&rft.issue=4&rft.spage=2022&rft.epage=2037&rft.pages=2022-2037&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2777183&rft_dat=%3Cproquest_RIE%3E2068352045%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068352045&rft_id=info:pmid/29989985&rft_ieee_id=8119524&rfr_iscdi=true |