Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

A robust physics-based combined active-passive (C-AP), or active-passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function, which constrains similar resoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2017-07, Vol.55 (7), p.4098-4110
Hauptverfasser: Akbar, Ruzbeh, Cosh, Michael H., O'Neill, Peggy E., Entekhabi, Dara, Moghaddam, Mahta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4110
container_issue 7
container_start_page 4098
container_title IEEE transactions on geoscience and remote sensing
container_volume 55
creator Akbar, Ruzbeh
Cosh, Michael H.
O'Neill, Peggy E.
Entekhabi, Dara
Moghaddam, Mahta
description A robust physics-based combined active-passive (C-AP), or active-passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function, which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in C-AP estimation, surface roughness can be considered a free parameter. Extensive Monte Carlo numerical simulations and assessment using field data have been performed both to evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors range from 0.18 to 0.03 cm 3 /cm 3 for two different land-cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.
doi_str_mv 10.1109/TGRS.2017.2688403
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29657350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7912225</ieee_id><sourcerecordid>1913520867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f1c734fe2e540e5b9c1c233004c15023a2b249727d03d5829e7a96b9929329cc3</originalsourceid><addsrcrecordid>eNpdkVFrFDEQx4NY7Fn9ACLIQl982TOZJJvkRZCjtkKL0KvPIZudbVN2NzXZFfrtzXHnob7MPMxv_szwI-Qdo2vGqPl0d3m7XQNlag2N1oLyF2TFpNQ1bYR4SVaUmaYGbeCUvM75kVImJFOvyCmYRiou6YpcbeLYhgm76tZ1LtWlhjjijKnaLql3HqttDEN1E0Oel4SVmwoal_uHCXOuLvIcRjeHOL0hJ70bMr499DPy4-vF3eaqvv5--W3z5br2Qqi57plXXPQIKAVF2RrPPHBOqfBMUuAOWhBGgeoo76QGg8qZpjUGDAfjPT8jn_e5T0s7YudxmpMb7FMqd6RnG12w_06m8GDv4y8rteGsESXg4yEgxZ8L5tmOIXscBjdhXLIFClIZzYUu6Pl_6GNc0lTes8wwLoHqRhWK7SmfYs4J--MxjNqdJ7vzZHee7MFT2fnw9xfHjT9iCvB-DwREPI6VYQAg-W8kIpZF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913520867</pqid></control><display><type>article</type><title>Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Akbar, Ruzbeh ; Cosh, Michael H. ; O'Neill, Peggy E. ; Entekhabi, Dara ; Moghaddam, Mahta</creator><creatorcontrib>Akbar, Ruzbeh ; Cosh, Michael H. ; O'Neill, Peggy E. ; Entekhabi, Dara ; Moghaddam, Mahta</creatorcontrib><description>A robust physics-based combined active-passive (C-AP), or active-passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function, which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in C-AP estimation, surface roughness can be considered a free parameter. Extensive Monte Carlo numerical simulations and assessment using field data have been performed both to evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors range from 0.18 to 0.03 cm 3 /cm 3 for two different land-cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2688403</identifier><identifier>PMID: 29657350</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer simulation ; Corn ; Emission ; Estimation ; Land cover ; Mathematical models ; Measurement ; Moisture ; Monte Carlo simulation ; Noise ; Noise measurement ; Noise prediction ; Optimization ; Physics ; Radar ; radiometer ; Radiometers ; Radiometry ; Regularization ; Retrieval ; Robustness (mathematics) ; Rough surfaces ; Roughness ; Scattering ; Soil ; Soil measurements ; Soil moisture ; Soil Moisture Active–Passive (SMAP) ; Soils ; Statistical methods ; Surface roughness</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-07, Vol.55 (7), p.4098-4110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f1c734fe2e540e5b9c1c233004c15023a2b249727d03d5829e7a96b9929329cc3</citedby><cites>FETCH-LOGICAL-c447t-f1c734fe2e540e5b9c1c233004c15023a2b249727d03d5829e7a96b9929329cc3</cites><orcidid>0000-0002-9963-0488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7912225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7912225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29657350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akbar, Ruzbeh</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>O'Neill, Peggy E.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><title>Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE Trans Geosci Remote Sens</addtitle><description>A robust physics-based combined active-passive (C-AP), or active-passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function, which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in C-AP estimation, surface roughness can be considered a free parameter. Extensive Monte Carlo numerical simulations and assessment using field data have been performed both to evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors range from 0.18 to 0.03 cm 3 /cm 3 for two different land-cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.</description><subject>Computer simulation</subject><subject>Corn</subject><subject>Emission</subject><subject>Estimation</subject><subject>Land cover</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Moisture</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Physics</subject><subject>Radar</subject><subject>radiometer</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Regularization</subject><subject>Retrieval</subject><subject>Robustness (mathematics)</subject><subject>Rough surfaces</subject><subject>Roughness</subject><subject>Scattering</subject><subject>Soil</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>Soil Moisture Active–Passive (SMAP)</subject><subject>Soils</subject><subject>Statistical methods</subject><subject>Surface roughness</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkVFrFDEQx4NY7Fn9ACLIQl982TOZJJvkRZCjtkKL0KvPIZudbVN2NzXZFfrtzXHnob7MPMxv_szwI-Qdo2vGqPl0d3m7XQNlag2N1oLyF2TFpNQ1bYR4SVaUmaYGbeCUvM75kVImJFOvyCmYRiou6YpcbeLYhgm76tZ1LtWlhjjijKnaLql3HqttDEN1E0Oel4SVmwoal_uHCXOuLvIcRjeHOL0hJ70bMr499DPy4-vF3eaqvv5--W3z5br2Qqi57plXXPQIKAVF2RrPPHBOqfBMUuAOWhBGgeoo76QGg8qZpjUGDAfjPT8jn_e5T0s7YudxmpMb7FMqd6RnG12w_06m8GDv4y8rteGsESXg4yEgxZ8L5tmOIXscBjdhXLIFClIZzYUu6Pl_6GNc0lTes8wwLoHqRhWK7SmfYs4J--MxjNqdJ7vzZHee7MFT2fnw9xfHjT9iCvB-DwREPI6VYQAg-W8kIpZF</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Akbar, Ruzbeh</creator><creator>Cosh, Michael H.</creator><creator>O'Neill, Peggy E.</creator><creator>Entekhabi, Dara</creator><creator>Moghaddam, Mahta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9963-0488</orcidid></search><sort><creationdate>20170701</creationdate><title>Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation</title><author>Akbar, Ruzbeh ; Cosh, Michael H. ; O'Neill, Peggy E. ; Entekhabi, Dara ; Moghaddam, Mahta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f1c734fe2e540e5b9c1c233004c15023a2b249727d03d5829e7a96b9929329cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Corn</topic><topic>Emission</topic><topic>Estimation</topic><topic>Land cover</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Moisture</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Physics</topic><topic>Radar</topic><topic>radiometer</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Regularization</topic><topic>Retrieval</topic><topic>Robustness (mathematics)</topic><topic>Rough surfaces</topic><topic>Roughness</topic><topic>Scattering</topic><topic>Soil</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>Soil Moisture Active–Passive (SMAP)</topic><topic>Soils</topic><topic>Statistical methods</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbar, Ruzbeh</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>O'Neill, Peggy E.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akbar, Ruzbeh</au><au>Cosh, Michael H.</au><au>O'Neill, Peggy E.</au><au>Entekhabi, Dara</au><au>Moghaddam, Mahta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><addtitle>IEEE Trans Geosci Remote Sens</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>55</volume><issue>7</issue><spage>4098</spage><epage>4110</epage><pages>4098-4110</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A robust physics-based combined active-passive (C-AP), or active-passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function, which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in C-AP estimation, surface roughness can be considered a free parameter. Extensive Monte Carlo numerical simulations and assessment using field data have been performed both to evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors range from 0.18 to 0.03 cm 3 /cm 3 for two different land-cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29657350</pmid><doi>10.1109/TGRS.2017.2688403</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9963-0488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2017-07, Vol.55 (7), p.4098-4110
issn 0196-2892
1558-0644
language eng
recordid cdi_pubmed_primary_29657350
source IEEE Electronic Library (IEL)
subjects Computer simulation
Corn
Emission
Estimation
Land cover
Mathematical models
Measurement
Moisture
Monte Carlo simulation
Noise
Noise measurement
Noise prediction
Optimization
Physics
Radar
radiometer
Radiometers
Radiometry
Regularization
Retrieval
Robustness (mathematics)
Rough surfaces
Roughness
Scattering
Soil
Soil measurements
Soil moisture
Soil Moisture Active–Passive (SMAP)
Soils
Statistical methods
Surface roughness
title Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Radar-Radiometer%20Surface%20Soil%20Moisture%20and%20Roughness%20Estimation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Akbar,%20Ruzbeh&rft.date=2017-07-01&rft.volume=55&rft.issue=7&rft.spage=4098&rft.epage=4110&rft.pages=4098-4110&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2688403&rft_dat=%3Cproquest_RIE%3E1913520867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913520867&rft_id=info:pmid/29657350&rft_ieee_id=7912225&rfr_iscdi=true