Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides

Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2018-07, Vol.1859 (7), p.501
Hauptverfasser: Ortega-Ramos, Marcia, Canniffe, Daniel P, Radle, Matthew I, Neil Hunter, C, Bryant, Donald A, Golbeck, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 501
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1859
creator Ortega-Ramos, Marcia
Canniffe, Daniel P
Radle, Matthew I
Neil Hunter, C
Bryant, Donald A
Golbeck, John H
description Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl g , where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl b , where P is phytyl, rather than the native BChl a , we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl g . Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchG gene from Rba. sphaeroides was replaced with bchG from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl g . The construction of a strain producing BChl g validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl g .
doi_str_mv 10.1016/j.bbabio.2018.02.006
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_29496394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29496394</sourcerecordid><originalsourceid>FETCH-pubmed_primary_294963943</originalsourceid><addsrcrecordid>eNqFjb0OgjAURjtoFH_ewJi-gPVSEGU2EBcX405ae6Ul2JIWB95eE3V2OsN38h1CVjGwGOJs2zAphTSOcYgPDDgDyEYkAoDdhu_5YUpmITTwVlOeTMiU52meJXkakXNha2MRPSr6PgiD7TUGE6i7UyluPXrjbrp13nV6aFta05IaSy_aKffZaei0QO-MwrAg47toAy6_nJN1WVyPp033lA9UVefNQ_ih-vWTv8ILE-VC9w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Ortega-Ramos, Marcia ; Canniffe, Daniel P ; Radle, Matthew I ; Neil Hunter, C ; Bryant, Donald A ; Golbeck, John H</creator><creatorcontrib>Ortega-Ramos, Marcia ; Canniffe, Daniel P ; Radle, Matthew I ; Neil Hunter, C ; Bryant, Donald A ; Golbeck, John H</creatorcontrib><description>Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl g , where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl b , where P is phytyl, rather than the native BChl a , we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl g . Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchG gene from Rba. sphaeroides was replaced with bchG from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl g . The construction of a strain producing BChl g validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl g .</description><identifier>ISSN: 0005-2728</identifier><identifier>DOI: 10.1016/j.bbabio.2018.02.006</identifier><identifier>PMID: 29496394</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Bacteriochlorophylls - biosynthesis ; Biosynthetic Pathways ; Photosynthesis ; Polyisoprenyl Phosphates - biosynthesis ; Rhodobacter sphaeroides - genetics ; Rhodobacter sphaeroides - metabolism</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2018-07, Vol.1859 (7), p.501</ispartof><rights>Copyright © 2018. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29496394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega-Ramos, Marcia</creatorcontrib><creatorcontrib>Canniffe, Daniel P</creatorcontrib><creatorcontrib>Radle, Matthew I</creatorcontrib><creatorcontrib>Neil Hunter, C</creatorcontrib><creatorcontrib>Bryant, Donald A</creatorcontrib><creatorcontrib>Golbeck, John H</creatorcontrib><title>Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl g , where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl b , where P is phytyl, rather than the native BChl a , we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl g . Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchG gene from Rba. sphaeroides was replaced with bchG from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl g . The construction of a strain producing BChl g validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl g .</description><subject>Bacteriochlorophylls - biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Photosynthesis</subject><subject>Polyisoprenyl Phosphates - biosynthesis</subject><subject>Rhodobacter sphaeroides - genetics</subject><subject>Rhodobacter sphaeroides - metabolism</subject><issn>0005-2728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjb0OgjAURjtoFH_ewJi-gPVSEGU2EBcX405ae6Ul2JIWB95eE3V2OsN38h1CVjGwGOJs2zAphTSOcYgPDDgDyEYkAoDdhu_5YUpmITTwVlOeTMiU52meJXkakXNha2MRPSr6PgiD7TUGE6i7UyluPXrjbrp13nV6aFta05IaSy_aKffZaei0QO-MwrAg47toAy6_nJN1WVyPp033lA9UVefNQ_ih-vWTv8ILE-VC9w</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Ortega-Ramos, Marcia</creator><creator>Canniffe, Daniel P</creator><creator>Radle, Matthew I</creator><creator>Neil Hunter, C</creator><creator>Bryant, Donald A</creator><creator>Golbeck, John H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201807</creationdate><title>Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides</title><author>Ortega-Ramos, Marcia ; Canniffe, Daniel P ; Radle, Matthew I ; Neil Hunter, C ; Bryant, Donald A ; Golbeck, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_294963943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteriochlorophylls - biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Photosynthesis</topic><topic>Polyisoprenyl Phosphates - biosynthesis</topic><topic>Rhodobacter sphaeroides - genetics</topic><topic>Rhodobacter sphaeroides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Ramos, Marcia</creatorcontrib><creatorcontrib>Canniffe, Daniel P</creatorcontrib><creatorcontrib>Radle, Matthew I</creatorcontrib><creatorcontrib>Neil Hunter, C</creatorcontrib><creatorcontrib>Bryant, Donald A</creatorcontrib><creatorcontrib>Golbeck, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Ramos, Marcia</au><au>Canniffe, Daniel P</au><au>Radle, Matthew I</au><au>Neil Hunter, C</au><au>Bryant, Donald A</au><au>Golbeck, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2018-07</date><risdate>2018</risdate><volume>1859</volume><issue>7</issue><spage>501</spage><pages>501-</pages><issn>0005-2728</issn><abstract>Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl g , where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl b , where P is phytyl, rather than the native BChl a , we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl g . Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchG gene from Rba. sphaeroides was replaced with bchG from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl g . The construction of a strain producing BChl g validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl g .</abstract><cop>Netherlands</cop><pmid>29496394</pmid><doi>10.1016/j.bbabio.2018.02.006</doi></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2018-07, Vol.1859 (7), p.501
issn 0005-2728
language eng
recordid cdi_pubmed_primary_29496394
source MEDLINE; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Bacteriochlorophylls - biosynthesis
Biosynthetic Pathways
Photosynthesis
Polyisoprenyl Phosphates - biosynthesis
Rhodobacter sphaeroides - genetics
Rhodobacter sphaeroides - metabolism
title Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20biosynthesis%20of%20bacteriochlorophyll%20g%20F%20in%20Rhodobacter%20sphaeroides&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Ortega-Ramos,%20Marcia&rft.date=2018-07&rft.volume=1859&rft.issue=7&rft.spage=501&rft.pages=501-&rft.issn=0005-2728&rft_id=info:doi/10.1016/j.bbabio.2018.02.006&rft_dat=%3Cpubmed%3E29496394%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29496394&rfr_iscdi=true