Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production

Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2018-04, Vol.1859 (4), p.253
Hauptverfasser: Wiegand, K, Winkler, M, Rumpel, S, Kannchen, D, Rexroth, S, Hase, T, Farès, C, Happe, T, Lubitz, W, Rögner, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 253
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1859
creator Wiegand, K
Winkler, M
Rumpel, S
Kannchen, D
Rexroth, S
Hase, T
Farès, C
Happe, T
Lubitz, W
Rögner, M
description Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]‑hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.
doi_str_mv 10.1016/j.bbabio.2018.01.006
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_29378161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29378161</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-307bc4e70b1e5bbd6e7f7835b227ac337a1084f19e3d4197e7b20e4212fa8a993</originalsourceid><addsrcrecordid>eNpNkEtLAzEYRbNQbK3-A5HsJdM8ZiYzy1IfFYqK6Lokky82pU2GJAW78q87RQVXl3s5nMVF6IrRglFWTzeF1kq7UHDKmoKygtL6BI0ppRXhkjcjdJ7Shg5oycUZGvFWyIbVbIy-XlV2wastjmAguQ-Pg8V5DdhCHKbw6Tx5mt2-4BtMhmICGdZ9l1WC6T_E-QxRdUcXtiHifh1ySAc_mJJLxEAP3oDPeIE5Jn0MR8cAX6BTq7YJLn9zgt7v797mC7J8fnicz5akZ7TJRFCpuxIk1QwqrU0N0spGVJpzqTohpBqw0rIWhClZK0FqTqHkjFvVqLYVE3T94-33egdm1Ue3U_Gw-ntCfAPyJWJg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wiegand, K ; Winkler, M ; Rumpel, S ; Kannchen, D ; Rexroth, S ; Hase, T ; Farès, C ; Happe, T ; Lubitz, W ; Rögner, M</creator><creatorcontrib>Wiegand, K ; Winkler, M ; Rumpel, S ; Kannchen, D ; Rexroth, S ; Hase, T ; Farès, C ; Happe, T ; Lubitz, W ; Rögner, M</creatorcontrib><description>Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]‑hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.</description><identifier>ISSN: 0005-2728</identifier><identifier>DOI: 10.1016/j.bbabio.2018.01.006</identifier><identifier>PMID: 29378161</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Binding Sites ; Cloning, Molecular ; Electron Transport ; Electrons ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Ferredoxin-NADP Reductase - chemistry ; Ferredoxin-NADP Reductase - genetics ; Ferredoxin-NADP Reductase - metabolism ; Ferredoxins - chemistry ; Ferredoxins - genetics ; Ferredoxins - metabolism ; Gene Expression ; Hydrogen - metabolism ; Hydrogenase - chemistry ; Hydrogenase - genetics ; Hydrogenase - metabolism ; Kinetics ; Metabolic Engineering - methods ; Models, Molecular ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Photosynthesis - genetics ; Photosystem I Protein Complex - genetics ; Photosystem I Protein Complex - metabolism ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Synechocystis - enzymology ; Synechocystis - genetics ; Thermodynamics</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2018-04, Vol.1859 (4), p.253</ispartof><rights>Copyright © 2018. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29378161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiegand, K</creatorcontrib><creatorcontrib>Winkler, M</creatorcontrib><creatorcontrib>Rumpel, S</creatorcontrib><creatorcontrib>Kannchen, D</creatorcontrib><creatorcontrib>Rexroth, S</creatorcontrib><creatorcontrib>Hase, T</creatorcontrib><creatorcontrib>Farès, C</creatorcontrib><creatorcontrib>Happe, T</creatorcontrib><creatorcontrib>Lubitz, W</creatorcontrib><creatorcontrib>Rögner, M</creatorcontrib><title>Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]‑hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.</description><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Ferredoxin-NADP Reductase - chemistry</subject><subject>Ferredoxin-NADP Reductase - genetics</subject><subject>Ferredoxin-NADP Reductase - metabolism</subject><subject>Ferredoxins - chemistry</subject><subject>Ferredoxins - genetics</subject><subject>Ferredoxins - metabolism</subject><subject>Gene Expression</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogenase - chemistry</subject><subject>Hydrogenase - genetics</subject><subject>Hydrogenase - metabolism</subject><subject>Kinetics</subject><subject>Metabolic Engineering - methods</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oxidation-Reduction</subject><subject>Photosynthesis - genetics</subject><subject>Photosystem I Protein Complex - genetics</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Synechocystis - enzymology</subject><subject>Synechocystis - genetics</subject><subject>Thermodynamics</subject><issn>0005-2728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkEtLAzEYRbNQbK3-A5HsJdM8ZiYzy1IfFYqK6Lokky82pU2GJAW78q87RQVXl3s5nMVF6IrRglFWTzeF1kq7UHDKmoKygtL6BI0ppRXhkjcjdJ7Shg5oycUZGvFWyIbVbIy-XlV2wastjmAguQ-Pg8V5DdhCHKbw6Tx5mt2-4BtMhmICGdZ9l1WC6T_E-QxRdUcXtiHifh1ySAc_mJJLxEAP3oDPeIE5Jn0MR8cAX6BTq7YJLn9zgt7v797mC7J8fnicz5akZ7TJRFCpuxIk1QwqrU0N0spGVJpzqTohpBqw0rIWhClZK0FqTqHkjFvVqLYVE3T94-33egdm1Ue3U_Gw-ntCfAPyJWJg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Wiegand, K</creator><creator>Winkler, M</creator><creator>Rumpel, S</creator><creator>Kannchen, D</creator><creator>Rexroth, S</creator><creator>Hase, T</creator><creator>Farès, C</creator><creator>Happe, T</creator><creator>Lubitz, W</creator><creator>Rögner, M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201804</creationdate><title>Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production</title><author>Wiegand, K ; Winkler, M ; Rumpel, S ; Kannchen, D ; Rexroth, S ; Hase, T ; Farès, C ; Happe, T ; Lubitz, W ; Rögner, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-307bc4e70b1e5bbd6e7f7835b227ac337a1084f19e3d4197e7b20e4212fa8a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Ferredoxin-NADP Reductase - chemistry</topic><topic>Ferredoxin-NADP Reductase - genetics</topic><topic>Ferredoxin-NADP Reductase - metabolism</topic><topic>Ferredoxins - chemistry</topic><topic>Ferredoxins - genetics</topic><topic>Ferredoxins - metabolism</topic><topic>Gene Expression</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogenase - chemistry</topic><topic>Hydrogenase - genetics</topic><topic>Hydrogenase - metabolism</topic><topic>Kinetics</topic><topic>Metabolic Engineering - methods</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oxidation-Reduction</topic><topic>Photosynthesis - genetics</topic><topic>Photosystem I Protein Complex - genetics</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Synechocystis - enzymology</topic><topic>Synechocystis - genetics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiegand, K</creatorcontrib><creatorcontrib>Winkler, M</creatorcontrib><creatorcontrib>Rumpel, S</creatorcontrib><creatorcontrib>Kannchen, D</creatorcontrib><creatorcontrib>Rexroth, S</creatorcontrib><creatorcontrib>Hase, T</creatorcontrib><creatorcontrib>Farès, C</creatorcontrib><creatorcontrib>Happe, T</creatorcontrib><creatorcontrib>Lubitz, W</creatorcontrib><creatorcontrib>Rögner, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiegand, K</au><au>Winkler, M</au><au>Rumpel, S</au><au>Kannchen, D</au><au>Rexroth, S</au><au>Hase, T</au><au>Farès, C</au><au>Happe, T</au><au>Lubitz, W</au><au>Rögner, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2018-04</date><risdate>2018</risdate><volume>1859</volume><issue>4</issue><spage>253</spage><pages>253-</pages><issn>0005-2728</issn><abstract>Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]‑hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.</abstract><cop>Netherlands</cop><pmid>29378161</pmid><doi>10.1016/j.bbabio.2018.01.006</doi></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2018-04, Vol.1859 (4), p.253
issn 0005-2728
language eng
recordid cdi_pubmed_primary_29378161
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Binding Sites
Cloning, Molecular
Electron Transport
Electrons
Escherichia coli - genetics
Escherichia coli - metabolism
Ferredoxin-NADP Reductase - chemistry
Ferredoxin-NADP Reductase - genetics
Ferredoxin-NADP Reductase - metabolism
Ferredoxins - chemistry
Ferredoxins - genetics
Ferredoxins - metabolism
Gene Expression
Hydrogen - metabolism
Hydrogenase - chemistry
Hydrogenase - genetics
Hydrogenase - metabolism
Kinetics
Metabolic Engineering - methods
Models, Molecular
Mutagenesis, Site-Directed
Oxidation-Reduction
Photosynthesis - genetics
Photosystem I Protein Complex - genetics
Photosystem I Protein Complex - metabolism
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Synechocystis - enzymology
Synechocystis - genetics
Thermodynamics
title Rational redesign of the ferredoxin-NADP + -oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2 -production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20redesign%20of%20the%20ferredoxin-NADP%20+%20-oxido-reductase/ferredoxin-interaction%20for%20photosynthesis-dependent%20H%202%20-production&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Wiegand,%20K&rft.date=2018-04&rft.volume=1859&rft.issue=4&rft.spage=253&rft.pages=253-&rft.issn=0005-2728&rft_id=info:doi/10.1016/j.bbabio.2018.01.006&rft_dat=%3Cpubmed%3E29378161%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29378161&rfr_iscdi=true