A new mechanism for internal nucleophilic substitution reactions
A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainl...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2018-02, Vol.16 (7), p.111-1112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1112 |
---|---|
container_issue | 7 |
container_start_page | 111 |
container_title | Organic & biomolecular chemistry |
container_volume | 16 |
creator | Aurell, María J González-Cardenete, Miguel A Zaragozá, Ramón J |
description | A new mechanism for the classic internal nucleophilic substitution reactions S
N
i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S
N
i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S
N
i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and
tert
-butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center
syn
-rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO
2
. The olefin, HCl and SO
2
form a molecular complex. The final
syn
-addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation.
A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S
N
i). |
doi_str_mv | 10.1039/c7ob02994b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29355868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010880182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</originalsourceid><addsrcrecordid>eNpdkd1LwzAUxYMobn68-K4UfBGhmo-2Sd7chl8w2Is-l_Q2YRltM5MG8b-3c3OCT_fA_XEu51yELgi-I5jJe-CuwlTKrDpAY5JxnuKcycO9pniETkJYYUwkL7JjNKKS5bkoxBg9TJJOfyathqXqbGgT43xiu177TjVJF6HRbr20jYUkxCr0to-9dV3itYKNCGfoyKgm6PPdPEXvT49vs5d0vnh-nU3mKTBG-5RUwHlW1BSgqLmhps4M8MwQKijGiiklCqVVpYWpSQ25zPLhAi-AgKkZl-wU3Wx91959RB36srUBdNOoTrsYSiKFlENgUQzo9T905eImTygpJlgITAQdqNstBd6F4LUp1962yn-VBJebXssZX0x_ep0O8NXOMlatrvfob5EDcLkFfID99u8x7Bs7XH1J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010880182</pqid></control><display><type>article</type><title>A new mechanism for internal nucleophilic substitution reactions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</creator><creatorcontrib>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</creatorcontrib><description>A new mechanism for the classic internal nucleophilic substitution reactions S
N
i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S
N
i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S
N
i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and
tert
-butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center
syn
-rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO
2
. The olefin, HCl and SO
2
form a molecular complex. The final
syn
-addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation.
A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S
N
i).</description><identifier>ISSN: 1477-0520</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/c7ob02994b</identifier><identifier>PMID: 29355868</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acetonitrile ; Alkanes ; Alkenes ; Chlorides ; Comparative studies ; Computer applications ; Expulsion ; Ion pairs ; Substitution reactions ; Substrates ; Sulfur dioxide</subject><ispartof>Organic & biomolecular chemistry, 2018-02, Vol.16 (7), p.111-1112</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</cites><orcidid>0000-0002-8762-0426 ; 0000-0003-2515-6557 ; 0000-0002-6227-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29355868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aurell, María J</creatorcontrib><creatorcontrib>González-Cardenete, Miguel A</creatorcontrib><creatorcontrib>Zaragozá, Ramón J</creatorcontrib><title>A new mechanism for internal nucleophilic substitution reactions</title><title>Organic & biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>A new mechanism for the classic internal nucleophilic substitution reactions S
N
i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S
N
i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S
N
i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and
tert
-butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center
syn
-rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO
2
. The olefin, HCl and SO
2
form a molecular complex. The final
syn
-addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation.
A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S
N
i).</description><subject>Acetonitrile</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>Chlorides</subject><subject>Comparative studies</subject><subject>Computer applications</subject><subject>Expulsion</subject><subject>Ion pairs</subject><subject>Substitution reactions</subject><subject>Substrates</subject><subject>Sulfur dioxide</subject><issn>1477-0520</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkd1LwzAUxYMobn68-K4UfBGhmo-2Sd7chl8w2Is-l_Q2YRltM5MG8b-3c3OCT_fA_XEu51yELgi-I5jJe-CuwlTKrDpAY5JxnuKcycO9pniETkJYYUwkL7JjNKKS5bkoxBg9TJJOfyathqXqbGgT43xiu177TjVJF6HRbr20jYUkxCr0to-9dV3itYKNCGfoyKgm6PPdPEXvT49vs5d0vnh-nU3mKTBG-5RUwHlW1BSgqLmhps4M8MwQKijGiiklCqVVpYWpSQ25zPLhAi-AgKkZl-wU3Wx91959RB36srUBdNOoTrsYSiKFlENgUQzo9T905eImTygpJlgITAQdqNstBd6F4LUp1962yn-VBJebXssZX0x_ep0O8NXOMlatrvfob5EDcLkFfID99u8x7Bs7XH1J</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Aurell, María J</creator><creator>González-Cardenete, Miguel A</creator><creator>Zaragozá, Ramón J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8762-0426</orcidid><orcidid>https://orcid.org/0000-0003-2515-6557</orcidid><orcidid>https://orcid.org/0000-0002-6227-1864</orcidid></search><sort><creationdate>20180214</creationdate><title>A new mechanism for internal nucleophilic substitution reactions</title><author>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetonitrile</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>Chlorides</topic><topic>Comparative studies</topic><topic>Computer applications</topic><topic>Expulsion</topic><topic>Ion pairs</topic><topic>Substitution reactions</topic><topic>Substrates</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aurell, María J</creatorcontrib><creatorcontrib>González-Cardenete, Miguel A</creatorcontrib><creatorcontrib>Zaragozá, Ramón J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Organic & biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aurell, María J</au><au>González-Cardenete, Miguel A</au><au>Zaragozá, Ramón J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new mechanism for internal nucleophilic substitution reactions</atitle><jtitle>Organic & biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>16</volume><issue>7</issue><spage>111</spage><epage>1112</epage><pages>111-1112</pages><issn>1477-0520</issn><eissn>1477-0539</eissn><abstract>A new mechanism for the classic internal nucleophilic substitution reactions S
N
i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S
N
i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S
N
i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and
tert
-butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center
syn
-rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO
2
. The olefin, HCl and SO
2
form a molecular complex. The final
syn
-addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation.
A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S
N
i).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29355868</pmid><doi>10.1039/c7ob02994b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8762-0426</orcidid><orcidid>https://orcid.org/0000-0003-2515-6557</orcidid><orcidid>https://orcid.org/0000-0002-6227-1864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-0520 |
ispartof | Organic & biomolecular chemistry, 2018-02, Vol.16 (7), p.111-1112 |
issn | 1477-0520 1477-0539 |
language | eng |
recordid | cdi_pubmed_primary_29355868 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acetonitrile Alkanes Alkenes Chlorides Comparative studies Computer applications Expulsion Ion pairs Substitution reactions Substrates Sulfur dioxide |
title | A new mechanism for internal nucleophilic substitution reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20mechanism%20for%20internal%20nucleophilic%20substitution%20reactions&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Aurell,%20Mar%C3%ADa%20J&rft.date=2018-02-14&rft.volume=16&rft.issue=7&rft.spage=111&rft.epage=1112&rft.pages=111-1112&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/c7ob02994b&rft_dat=%3Cproquest_pubme%3E2010880182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010880182&rft_id=info:pmid/29355868&rfr_iscdi=true |