A new mechanism for internal nucleophilic substitution reactions

A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2018-02, Vol.16 (7), p.111-1112
Hauptverfasser: Aurell, María J, González-Cardenete, Miguel A, Zaragozá, Ramón J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1112
container_issue 7
container_start_page 111
container_title Organic & biomolecular chemistry
container_volume 16
creator Aurell, María J
González-Cardenete, Miguel A
Zaragozá, Ramón J
description A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S N i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and tert -butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center syn -rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO 2 . The olefin, HCl and SO 2 form a molecular complex. The final syn -addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation. A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S N i).
doi_str_mv 10.1039/c7ob02994b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29355868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010880182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</originalsourceid><addsrcrecordid>eNpdkd1LwzAUxYMobn68-K4UfBGhmo-2Sd7chl8w2Is-l_Q2YRltM5MG8b-3c3OCT_fA_XEu51yELgi-I5jJe-CuwlTKrDpAY5JxnuKcycO9pniETkJYYUwkL7JjNKKS5bkoxBg9TJJOfyathqXqbGgT43xiu177TjVJF6HRbr20jYUkxCr0to-9dV3itYKNCGfoyKgm6PPdPEXvT49vs5d0vnh-nU3mKTBG-5RUwHlW1BSgqLmhps4M8MwQKijGiiklCqVVpYWpSQ25zPLhAi-AgKkZl-wU3Wx91959RB36srUBdNOoTrsYSiKFlENgUQzo9T905eImTygpJlgITAQdqNstBd6F4LUp1962yn-VBJebXssZX0x_ep0O8NXOMlatrvfob5EDcLkFfID99u8x7Bs7XH1J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010880182</pqid></control><display><type>article</type><title>A new mechanism for internal nucleophilic substitution reactions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</creator><creatorcontrib>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</creatorcontrib><description>A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S N i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and tert -butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center syn -rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO 2 . The olefin, HCl and SO 2 form a molecular complex. The final syn -addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation. A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S N i).</description><identifier>ISSN: 1477-0520</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/c7ob02994b</identifier><identifier>PMID: 29355868</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acetonitrile ; Alkanes ; Alkenes ; Chlorides ; Comparative studies ; Computer applications ; Expulsion ; Ion pairs ; Substitution reactions ; Substrates ; Sulfur dioxide</subject><ispartof>Organic &amp; biomolecular chemistry, 2018-02, Vol.16 (7), p.111-1112</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</cites><orcidid>0000-0002-8762-0426 ; 0000-0003-2515-6557 ; 0000-0002-6227-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29355868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aurell, María J</creatorcontrib><creatorcontrib>González-Cardenete, Miguel A</creatorcontrib><creatorcontrib>Zaragozá, Ramón J</creatorcontrib><title>A new mechanism for internal nucleophilic substitution reactions</title><title>Organic &amp; biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S N i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and tert -butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center syn -rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO 2 . The olefin, HCl and SO 2 form a molecular complex. The final syn -addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation. A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S N i).</description><subject>Acetonitrile</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>Chlorides</subject><subject>Comparative studies</subject><subject>Computer applications</subject><subject>Expulsion</subject><subject>Ion pairs</subject><subject>Substitution reactions</subject><subject>Substrates</subject><subject>Sulfur dioxide</subject><issn>1477-0520</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkd1LwzAUxYMobn68-K4UfBGhmo-2Sd7chl8w2Is-l_Q2YRltM5MG8b-3c3OCT_fA_XEu51yELgi-I5jJe-CuwlTKrDpAY5JxnuKcycO9pniETkJYYUwkL7JjNKKS5bkoxBg9TJJOfyathqXqbGgT43xiu177TjVJF6HRbr20jYUkxCr0to-9dV3itYKNCGfoyKgm6PPdPEXvT49vs5d0vnh-nU3mKTBG-5RUwHlW1BSgqLmhps4M8MwQKijGiiklCqVVpYWpSQ25zPLhAi-AgKkZl-wU3Wx91959RB36srUBdNOoTrsYSiKFlENgUQzo9T905eImTygpJlgITAQdqNstBd6F4LUp1962yn-VBJebXssZX0x_ep0O8NXOMlatrvfob5EDcLkFfID99u8x7Bs7XH1J</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Aurell, María J</creator><creator>González-Cardenete, Miguel A</creator><creator>Zaragozá, Ramón J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8762-0426</orcidid><orcidid>https://orcid.org/0000-0003-2515-6557</orcidid><orcidid>https://orcid.org/0000-0002-6227-1864</orcidid></search><sort><creationdate>20180214</creationdate><title>A new mechanism for internal nucleophilic substitution reactions</title><author>Aurell, María J ; González-Cardenete, Miguel A ; Zaragozá, Ramón J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-1bc7746d2cc6d7f2fd4fc74f128200a3aa86aeabe8fd1dc5945eac76c1cfd3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetonitrile</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>Chlorides</topic><topic>Comparative studies</topic><topic>Computer applications</topic><topic>Expulsion</topic><topic>Ion pairs</topic><topic>Substitution reactions</topic><topic>Substrates</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aurell, María J</creatorcontrib><creatorcontrib>González-Cardenete, Miguel A</creatorcontrib><creatorcontrib>Zaragozá, Ramón J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Organic &amp; biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aurell, María J</au><au>González-Cardenete, Miguel A</au><au>Zaragozá, Ramón J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new mechanism for internal nucleophilic substitution reactions</atitle><jtitle>Organic &amp; biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>16</volume><issue>7</issue><spage>111</spage><epage>1112</epage><pages>111-1112</pages><issn>1477-0520</issn><eissn>1477-0539</eissn><abstract>A new mechanism for the classic internal nucleophilic substitution reactions S N i by means of computational studies in the gas-phase, DCM and acetonitrile is reported. Despite the importance of the S N i mechanism, since the mid-1990s this mechanism has remained unexplored. This study focused mainly on the comparison between the mechanisms postulated to date for the S N i reactions and a new mechanism suggested by us that fits better the experimental observations. This comparative study has been applied to the conversion of ethyl, neopentyl, isopropyl and tert -butyl chlorosulfites into the corresponding alkyl chlorides. This new mechanism occurs through two transition structures. For primary and secondary substrates, the first transition structure is a 6-center syn -rearrangement of the alkanesulfonyl chloride that produces the corresponding olefin by simultaneous expulsion of HCl and SO 2 . The olefin, HCl and SO 2 form a molecular complex. The final syn -addition of HCl to the olefin leads to alkyl chloride with the retention of configuration. For tertiary substrates, a variation of the previous mechanism is postulated with the intervention of contact ion pairs. It is of great importance to emphasize that this new mechanism is able to explain some experimental observations such as the presence of olefins in these types of reactions and the low reactivity of some systems such as neopentyl chlorosulfite. Our results pave the way to a new mechanistic perspective in similar reactions which will need further studies and validation. A new mechanism, through two transition structures, is postulated for internal nucleophilic substitution reactions (S N i).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29355868</pmid><doi>10.1039/c7ob02994b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8762-0426</orcidid><orcidid>https://orcid.org/0000-0003-2515-6557</orcidid><orcidid>https://orcid.org/0000-0002-6227-1864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-0520
ispartof Organic & biomolecular chemistry, 2018-02, Vol.16 (7), p.111-1112
issn 1477-0520
1477-0539
language eng
recordid cdi_pubmed_primary_29355868
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Acetonitrile
Alkanes
Alkenes
Chlorides
Comparative studies
Computer applications
Expulsion
Ion pairs
Substitution reactions
Substrates
Sulfur dioxide
title A new mechanism for internal nucleophilic substitution reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20mechanism%20for%20internal%20nucleophilic%20substitution%20reactions&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Aurell,%20Mar%C3%ADa%20J&rft.date=2018-02-14&rft.volume=16&rft.issue=7&rft.spage=111&rft.epage=1112&rft.pages=111-1112&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/c7ob02994b&rft_dat=%3Cproquest_pubme%3E2010880182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010880182&rft_id=info:pmid/29355868&rfr_iscdi=true