Decision landscapes: visualizing mouse-tracking data
Computerized paradigms have enabled gathering rich data on human behaviour, including information on motor execution of a decision, e.g. by tracking mouse cursor trajectories. These trajectories can reveal novel information about ongoing decision processes. As the number and complexity of mouse-trac...
Gespeichert in:
Veröffentlicht in: | Royal Society open science 2017-11, Vol.4 (11), p.170482-170482 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170482 |
---|---|
container_issue | 11 |
container_start_page | 170482 |
container_title | Royal Society open science |
container_volume | 4 |
creator | Zgonnikov, A. Aleni, A. Piiroinen, P. T. O'Hora, D. di Bernardo, M. |
description | Computerized paradigms have enabled gathering rich data on human behaviour, including information on motor execution of a decision, e.g. by tracking mouse cursor trajectories. These trajectories can reveal novel information about ongoing decision processes. As the number and complexity of mouse-tracking studies increase, more sophisticated methods are needed to analyse the decision trajectories. Here, we present a new computational approach to generating decision landscape visualizations based on mouse-tracking data. A decision landscape is an analogue of an energy potential field mathematically derived from the velocity of mouse movement during a decision. Visualized as a three-dimensional surface, it provides a comprehensive overview of decision dynamics. Employing the dynamical systems theory framework, we develop a new method for generating decision landscapes based on arbitrary number of trajectories. This approach not only generates three-dimensional illustration of decision landscapes, but also describes mouse trajectories by a number of interpretable parameters. These parameters characterize dynamics of decisions in more detail compared with conventional measures, and can be compared across experimental conditions, and even across individuals. The decision landscape visualization approach is a novel tool for analysing mouse trajectories during decision execution, which can provide new insights into individual differences in the dynamics of decision making. |
doi_str_mv | 10.1098/rsos.170482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29291053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c54f83fd8bd94d3d96f04475b4bdc3e8</doaj_id><sourcerecordid>1983255970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-48a96cfe52789ccbdce56f3987ae09d84dda4204432fc1aad46858d839647c5a3</originalsourceid><addsrcrecordid>eNptkc1PGzEQxS1URFDgxL3KsVK1qT_Xdg-VqkABCYkLnK2J7Q1ON-vU3kUKf32dLo1A4mTP-Ok34_cQuiB4TrBW31KOeU4k5ooeoVOKBa-ExOzTm_sEnee8xhgTgZms5QmaUE01wYKdIn7pbcghdrMWOpctbH3-PnsOeYA2vIRuNdvEIfuqT2B_70sHPZyh4wba7M9fzyl6_HX1sLip7u6vbxc_7yrLleorrkDXtvGCSqWtXTrrRd0wrSR4rJ3izgGnmHNGG0sAHK-VUE4xXXNpBbApuh25LsLabFPYQNqZCMH8a8S0MpD6YFtvrOCNYo1TS6e5Y07XTQFLseRlLPOqsH6MrO2w3PiySle-1L6Dvn_pwpNZxWcjJJE1lQXw5RWQ4p_B595sQra-Lb75YpEhWjEqhC6OT9HXUWpTzDn55jCGYLOPzexjM2NsRf357WYH7f-QigCPghR3xe5og-93Zh2H1JXyQ-Zf2ZOk_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983255970</pqid></control><display><type>article</type><title>Decision landscapes: visualizing mouse-tracking data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zgonnikov, A. ; Aleni, A. ; Piiroinen, P. T. ; O'Hora, D. ; di Bernardo, M.</creator><creatorcontrib>Zgonnikov, A. ; Aleni, A. ; Piiroinen, P. T. ; O'Hora, D. ; di Bernardo, M.</creatorcontrib><description>Computerized paradigms have enabled gathering rich data on human behaviour, including information on motor execution of a decision, e.g. by tracking mouse cursor trajectories. These trajectories can reveal novel information about ongoing decision processes. As the number and complexity of mouse-tracking studies increase, more sophisticated methods are needed to analyse the decision trajectories. Here, we present a new computational approach to generating decision landscape visualizations based on mouse-tracking data. A decision landscape is an analogue of an energy potential field mathematically derived from the velocity of mouse movement during a decision. Visualized as a three-dimensional surface, it provides a comprehensive overview of decision dynamics. Employing the dynamical systems theory framework, we develop a new method for generating decision landscapes based on arbitrary number of trajectories. This approach not only generates three-dimensional illustration of decision landscapes, but also describes mouse trajectories by a number of interpretable parameters. These parameters characterize dynamics of decisions in more detail compared with conventional measures, and can be compared across experimental conditions, and even across individuals. The decision landscape visualization approach is a novel tool for analysing mouse trajectories during decision execution, which can provide new insights into individual differences in the dynamics of decision making.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.170482</identifier><identifier>PMID: 29291053</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Decision Making ; Dynamical Systems ; Mathematics ; Mouse Tracking</subject><ispartof>Royal Society open science, 2017-11, Vol.4 (11), p.170482-170482</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-48a96cfe52789ccbdce56f3987ae09d84dda4204432fc1aad46858d839647c5a3</citedby><cites>FETCH-LOGICAL-c488t-48a96cfe52789ccbdce56f3987ae09d84dda4204432fc1aad46858d839647c5a3</cites><orcidid>0000-0002-6593-6948 ; 0000-0002-3578-1877 ; 0000-0003-3776-6782 ; 0000-0002-3329-0839 ; 0000-0003-3173-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,3308,27126,27903,27904,53770,53772,55534,55544</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29291053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zgonnikov, A.</creatorcontrib><creatorcontrib>Aleni, A.</creatorcontrib><creatorcontrib>Piiroinen, P. T.</creatorcontrib><creatorcontrib>O'Hora, D.</creatorcontrib><creatorcontrib>di Bernardo, M.</creatorcontrib><title>Decision landscapes: visualizing mouse-tracking data</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>Computerized paradigms have enabled gathering rich data on human behaviour, including information on motor execution of a decision, e.g. by tracking mouse cursor trajectories. These trajectories can reveal novel information about ongoing decision processes. As the number and complexity of mouse-tracking studies increase, more sophisticated methods are needed to analyse the decision trajectories. Here, we present a new computational approach to generating decision landscape visualizations based on mouse-tracking data. A decision landscape is an analogue of an energy potential field mathematically derived from the velocity of mouse movement during a decision. Visualized as a three-dimensional surface, it provides a comprehensive overview of decision dynamics. Employing the dynamical systems theory framework, we develop a new method for generating decision landscapes based on arbitrary number of trajectories. This approach not only generates three-dimensional illustration of decision landscapes, but also describes mouse trajectories by a number of interpretable parameters. These parameters characterize dynamics of decisions in more detail compared with conventional measures, and can be compared across experimental conditions, and even across individuals. The decision landscape visualization approach is a novel tool for analysing mouse trajectories during decision execution, which can provide new insights into individual differences in the dynamics of decision making.</description><subject>Decision Making</subject><subject>Dynamical Systems</subject><subject>Mathematics</subject><subject>Mouse Tracking</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc1PGzEQxS1URFDgxL3KsVK1qT_Xdg-VqkABCYkLnK2J7Q1ON-vU3kUKf32dLo1A4mTP-Ok34_cQuiB4TrBW31KOeU4k5ooeoVOKBa-ExOzTm_sEnee8xhgTgZms5QmaUE01wYKdIn7pbcghdrMWOpctbH3-PnsOeYA2vIRuNdvEIfuqT2B_70sHPZyh4wba7M9fzyl6_HX1sLip7u6vbxc_7yrLleorrkDXtvGCSqWtXTrrRd0wrSR4rJ3izgGnmHNGG0sAHK-VUE4xXXNpBbApuh25LsLabFPYQNqZCMH8a8S0MpD6YFtvrOCNYo1TS6e5Y07XTQFLseRlLPOqsH6MrO2w3PiySle-1L6Dvn_pwpNZxWcjJJE1lQXw5RWQ4p_B595sQra-Lb75YpEhWjEqhC6OT9HXUWpTzDn55jCGYLOPzexjM2NsRf357WYH7f-QigCPghR3xe5og-93Zh2H1JXyQ-Zf2ZOk_Q</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Zgonnikov, A.</creator><creator>Aleni, A.</creator><creator>Piiroinen, P. T.</creator><creator>O'Hora, D.</creator><creator>di Bernardo, M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6593-6948</orcidid><orcidid>https://orcid.org/0000-0002-3578-1877</orcidid><orcidid>https://orcid.org/0000-0003-3776-6782</orcidid><orcidid>https://orcid.org/0000-0002-3329-0839</orcidid><orcidid>https://orcid.org/0000-0003-3173-1693</orcidid></search><sort><creationdate>20171101</creationdate><title>Decision landscapes: visualizing mouse-tracking data</title><author>Zgonnikov, A. ; Aleni, A. ; Piiroinen, P. T. ; O'Hora, D. ; di Bernardo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-48a96cfe52789ccbdce56f3987ae09d84dda4204432fc1aad46858d839647c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Decision Making</topic><topic>Dynamical Systems</topic><topic>Mathematics</topic><topic>Mouse Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zgonnikov, A.</creatorcontrib><creatorcontrib>Aleni, A.</creatorcontrib><creatorcontrib>Piiroinen, P. T.</creatorcontrib><creatorcontrib>O'Hora, D.</creatorcontrib><creatorcontrib>di Bernardo, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zgonnikov, A.</au><au>Aleni, A.</au><au>Piiroinen, P. T.</au><au>O'Hora, D.</au><au>di Bernardo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision landscapes: visualizing mouse-tracking data</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>4</volume><issue>11</issue><spage>170482</spage><epage>170482</epage><pages>170482-170482</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>Computerized paradigms have enabled gathering rich data on human behaviour, including information on motor execution of a decision, e.g. by tracking mouse cursor trajectories. These trajectories can reveal novel information about ongoing decision processes. As the number and complexity of mouse-tracking studies increase, more sophisticated methods are needed to analyse the decision trajectories. Here, we present a new computational approach to generating decision landscape visualizations based on mouse-tracking data. A decision landscape is an analogue of an energy potential field mathematically derived from the velocity of mouse movement during a decision. Visualized as a three-dimensional surface, it provides a comprehensive overview of decision dynamics. Employing the dynamical systems theory framework, we develop a new method for generating decision landscapes based on arbitrary number of trajectories. This approach not only generates three-dimensional illustration of decision landscapes, but also describes mouse trajectories by a number of interpretable parameters. These parameters characterize dynamics of decisions in more detail compared with conventional measures, and can be compared across experimental conditions, and even across individuals. The decision landscape visualization approach is a novel tool for analysing mouse trajectories during decision execution, which can provide new insights into individual differences in the dynamics of decision making.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29291053</pmid><doi>10.1098/rsos.170482</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6593-6948</orcidid><orcidid>https://orcid.org/0000-0002-3578-1877</orcidid><orcidid>https://orcid.org/0000-0003-3776-6782</orcidid><orcidid>https://orcid.org/0000-0002-3329-0839</orcidid><orcidid>https://orcid.org/0000-0003-3173-1693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2054-5703 |
ispartof | Royal Society open science, 2017-11, Vol.4 (11), p.170482-170482 |
issn | 2054-5703 2054-5703 |
language | eng |
recordid | cdi_pubmed_primary_29291053 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central |
subjects | Decision Making Dynamical Systems Mathematics Mouse Tracking |
title | Decision landscapes: visualizing mouse-tracking data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20landscapes:%20visualizing%20mouse-tracking%20data&rft.jtitle=Royal%20Society%20open%20science&rft.au=Zgonnikov,%20A.&rft.date=2017-11-01&rft.volume=4&rft.issue=11&rft.spage=170482&rft.epage=170482&rft.pages=170482-170482&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.170482&rft_dat=%3Cproquest_pubme%3E1983255970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983255970&rft_id=info:pmid/29291053&rft_doaj_id=oai_doaj_org_article_c54f83fd8bd94d3d96f04475b4bdc3e8&rfr_iscdi=true |