MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction

We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2017-07, Vol.112 (519), p.1009-1021
Hauptverfasser: Zhu, Hongtu, Shen, Dan, Peng, Xuewei, Liu, Leo Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1021
container_issue 519
container_start_page 1009
container_title Journal of the American Statistical Association
container_volume 112
creator Zhu, Hongtu
Shen, Dan
Peng, Xuewei
Liu, Leo Yufeng
description We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, prediction of response to treatment, and monitoring of disease status, among many others. The MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten high-dimensional feature vectors, perform matrix decomposition for both dimension reduction and feature extraction, and build a prediction model by using the extracted features. Examples of such weight matrices include an importance score weight matrix for the selection of individual features at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature vectors. We integrate the importance of score weights with the spatial weights to recover the low-dimensional structure of high-dimensional features. We demonstrate the utility of our methods through extensive simulations and real data analyses of the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2016.1261710
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29151657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45027955</jstor_id><sourcerecordid>45027955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-6a88cdff175f1a77dd1280e77cb2fe01838d87595739d375a6bed17b5c7850a43</originalsourceid><addsrcrecordid>eNqFkUtPGzEUha2qVUkpPwE0y24m-HrGj2GBqNIHSCAiVES7shzbE4w849SetOLf16OEqGzAG_v6fPfo2gehQ8BTwAIfY2AEatpMST5NgTDggN-gCdCKl4TXP9-iyciUI7SHPqT0gPPiQrxHe6QBCozyCfp1dTef3ZwUV2s_uKSVt8Wddcv7wZpiHl2v3Ur5Yha6VehtPxQ3dhltSi70RRticZ7R8ovrbD9eZXIerXF6yMVH9K5VPtmD7b6Pbr99_TE7Ly-vv1_MPl-WmlI2lEwJoU3bAqctKM6NASKw5VwvSGsxiEoYwWlDedWYilPFFtYAX1DNBcWqrvbR6cZ3tV501ug8ZVRerqLrVHyUQTn5XOndvVyGP5KypiKMZINPW4MYfq9tGmSXf8J6r3ob1kkSTLBgFRfNqyg0jNU1rmF0pRtUx5BStO1uIsByTFA-JSjHBOU2wdx39P9zdl1PkWXgcAM8pCHEnV5TTHhDadbPNrrrc0Kd-huiN3JQjz7ENqqcaJLVyzP8A4mDtOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966440412</pqid></control><display><type>article</type><title>MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction</title><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Journals Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Zhu, Hongtu ; Shen, Dan ; Peng, Xuewei ; Liu, Leo Yufeng</creator><creatorcontrib>Zhu, Hongtu ; Shen, Dan ; Peng, Xuewei ; Liu, Leo Yufeng</creatorcontrib><description>We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, prediction of response to treatment, and monitoring of disease status, among many others. The MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten high-dimensional feature vectors, perform matrix decomposition for both dimension reduction and feature extraction, and build a prediction model by using the extracted features. Examples of such weight matrices include an importance score weight matrix for the selection of individual features at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature vectors. We integrate the importance of score weights with the spatial weights to recover the low-dimensional structure of high-dimensional features. We demonstrate the utility of our methods through extensive simulations and real data analyses of the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>ISSN: 1537-274X</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2016.1261710</identifier><identifier>PMID: 29151657</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Alzheimer ; Alzheimer disease ; Applications and Case Studies ; biomarkers ; data collection ; equations ; Feature ; image analysis ; monitoring ; prediction ; Principal component analysis ; prognosis ; Regression ; regression analysis ; Spatial ; Supervised</subject><ispartof>Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1009-1021</ispartof><rights>2017 American Statistical Association 2017</rights><rights>Copyright © 2017 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-6a88cdff175f1a77dd1280e77cb2fe01838d87595739d375a6bed17b5c7850a43</citedby><cites>FETCH-LOGICAL-c556t-6a88cdff175f1a77dd1280e77cb2fe01838d87595739d375a6bed17b5c7850a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45027955$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45027955$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229,59620,60409</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29151657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Shen, Dan</creatorcontrib><creatorcontrib>Peng, Xuewei</creatorcontrib><creatorcontrib>Liu, Leo Yufeng</creatorcontrib><title>MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction</title><title>Journal of the American Statistical Association</title><addtitle>J Am Stat Assoc</addtitle><description>We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, prediction of response to treatment, and monitoring of disease status, among many others. The MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten high-dimensional feature vectors, perform matrix decomposition for both dimension reduction and feature extraction, and build a prediction model by using the extracted features. Examples of such weight matrices include an importance score weight matrix for the selection of individual features at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature vectors. We integrate the importance of score weights with the spatial weights to recover the low-dimensional structure of high-dimensional features. We demonstrate the utility of our methods through extensive simulations and real data analyses of the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Supplementary materials for this article are available online.</description><subject>Alzheimer</subject><subject>Alzheimer disease</subject><subject>Applications and Case Studies</subject><subject>biomarkers</subject><subject>data collection</subject><subject>equations</subject><subject>Feature</subject><subject>image analysis</subject><subject>monitoring</subject><subject>prediction</subject><subject>Principal component analysis</subject><subject>prognosis</subject><subject>Regression</subject><subject>regression analysis</subject><subject>Spatial</subject><subject>Supervised</subject><issn>0162-1459</issn><issn>1537-274X</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEUha2qVUkpPwE0y24m-HrGj2GBqNIHSCAiVES7shzbE4w849SetOLf16OEqGzAG_v6fPfo2gehQ8BTwAIfY2AEatpMST5NgTDggN-gCdCKl4TXP9-iyciUI7SHPqT0gPPiQrxHe6QBCozyCfp1dTef3ZwUV2s_uKSVt8Wddcv7wZpiHl2v3Ur5Yha6VehtPxQ3dhltSi70RRticZ7R8ovrbD9eZXIerXF6yMVH9K5VPtmD7b6Pbr99_TE7Ly-vv1_MPl-WmlI2lEwJoU3bAqctKM6NASKw5VwvSGsxiEoYwWlDedWYilPFFtYAX1DNBcWqrvbR6cZ3tV501ug8ZVRerqLrVHyUQTn5XOndvVyGP5KypiKMZINPW4MYfq9tGmSXf8J6r3ob1kkSTLBgFRfNqyg0jNU1rmF0pRtUx5BStO1uIsByTFA-JSjHBOU2wdx39P9zdl1PkWXgcAM8pCHEnV5TTHhDadbPNrrrc0Kd-huiN3JQjz7ENqqcaJLVyzP8A4mDtOA</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Zhu, Hongtu</creator><creator>Shen, Dan</creator><creator>Peng, Xuewei</creator><creator>Liu, Leo Yufeng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group,LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170703</creationdate><title>MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction</title><author>Zhu, Hongtu ; Shen, Dan ; Peng, Xuewei ; Liu, Leo Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-6a88cdff175f1a77dd1280e77cb2fe01838d87595739d375a6bed17b5c7850a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alzheimer</topic><topic>Alzheimer disease</topic><topic>Applications and Case Studies</topic><topic>biomarkers</topic><topic>data collection</topic><topic>equations</topic><topic>Feature</topic><topic>image analysis</topic><topic>monitoring</topic><topic>prediction</topic><topic>Principal component analysis</topic><topic>prognosis</topic><topic>Regression</topic><topic>regression analysis</topic><topic>Spatial</topic><topic>Supervised</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Shen, Dan</creatorcontrib><creatorcontrib>Peng, Xuewei</creatorcontrib><creatorcontrib>Liu, Leo Yufeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hongtu</au><au>Shen, Dan</au><au>Peng, Xuewei</au><au>Liu, Leo Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction</atitle><jtitle>Journal of the American Statistical Association</jtitle><addtitle>J Am Stat Assoc</addtitle><date>2017-07-03</date><risdate>2017</risdate><volume>112</volume><issue>519</issue><spage>1009</spage><epage>1021</epage><pages>1009-1021</pages><issn>0162-1459</issn><issn>1537-274X</issn><eissn>1537-274X</eissn><abstract>We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, prediction of response to treatment, and monitoring of disease status, among many others. The MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten high-dimensional feature vectors, perform matrix decomposition for both dimension reduction and feature extraction, and build a prediction model by using the extracted features. Examples of such weight matrices include an importance score weight matrix for the selection of individual features at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature vectors. We integrate the importance of score weights with the spatial weights to recover the low-dimensional structure of high-dimensional features. We demonstrate the utility of our methods through extensive simulations and real data analyses of the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Supplementary materials for this article are available online.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>29151657</pmid><doi>10.1080/01621459.2016.1261710</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1009-1021
issn 0162-1459
1537-274X
1537-274X
language eng
recordid cdi_pubmed_primary_29151657
source Jstor Complete Legacy; Taylor & Francis Journals Complete; JSTOR Mathematics & Statistics
subjects Alzheimer
Alzheimer disease
Applications and Case Studies
biomarkers
data collection
equations
Feature
image analysis
monitoring
prediction
Principal component analysis
prognosis
Regression
regression analysis
Spatial
Supervised
title MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MWPCR:%20Multiscale%20Weighted%20Principal%20Component%20Regression%20for%20High-Dimensional%20Prediction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Zhu,%20Hongtu&rft.date=2017-07-03&rft.volume=112&rft.issue=519&rft.spage=1009&rft.epage=1021&rft.pages=1009-1021&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2016.1261710&rft_dat=%3Cjstor_pubme%3E45027955%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966440412&rft_id=info:pmid/29151657&rft_jstor_id=45027955&rfr_iscdi=true