The Electric Honeycomb; an investigation of the Rose window instability

The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2017-10, Vol.4 (10), p.170503-170503
1. Verfasser: Niazi, Muhammad Shaheer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170503
container_issue 10
container_start_page 170503
container_title Royal Society open science
container_volume 4
creator Niazi, Muhammad Shaheer
description The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow.
doi_str_mv 10.1098/rsos.170503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29134066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_834ac45ae49a406ca6ffd7bb9e1239e6</doaj_id><sourcerecordid>1964272808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-a98e0e103a60ff1740aae56641b839ce9c591e65e4522aa92a486d9a68c5c3673</originalsourceid><addsrcrecordid>eNp9kd1rFDEUxQdRbKl98l3mUZCtyeRrgiBIqW2hUGjro4Q7mTvbLLOTNclsGf96s04tWxGf8vXjnJN7iuItJSeU6PpjiD6eUEUEYS-Kw4oIvhCKsJd7-4PiOMYVIYRmSEn1ujioNGWcSHlYnN_dY3nWo03B2fLCDzhZv24-lTCUbthiTG4Jyfmh9F2ZMnvjI5YPbmj9QwZigsb1Lk1vilcd9BGPH9ej4tvXs7vTi8XV9fnl6ZerhRWKpwXoGglSwkCSrqOKEwAUUnLa1Exb1FZoilIgF1UFoCvgtWw1yNoKy6RiR8XlrNt6WJlNcGsIk_HgzO8LH5YGQnK2R1MzDpYLQK4hf9aC7LpWNY1GWjGNMmt9nrU2Y7PG1uKQAvTPRJ-_DO7eLP3W5MCy4joLvH8UCP7HmGdl1i5a7HsY0I_RUC15paqa1Bn9MKM2-BgDdk82lJhdk2bXpJmbzPS7_WRP7J_eMvB9BoKf8ri9dZgms_JjGPLR3Nxe3265y9LZmhLFJJHmp9vMJty4GEfcOe-Z_hWA_E__X5l_AZeWypc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964272808</pqid></control><display><type>article</type><title>The Electric Honeycomb; an investigation of the Rose window instability</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Niazi, Muhammad Shaheer</creator><creatorcontrib>Niazi, Muhammad Shaheer</creatorcontrib><description>The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.170503</identifier><identifier>PMID: 29134066</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Electrohydrodynamics ; Instability ; Physics ; Rose Window</subject><ispartof>Royal Society open science, 2017-10, Vol.4 (10), p.170503-170503</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-a98e0e103a60ff1740aae56641b839ce9c591e65e4522aa92a486d9a68c5c3673</citedby><cites>FETCH-LOGICAL-c574t-a98e0e103a60ff1740aae56641b839ce9c591e65e4522aa92a486d9a68c5c3673</cites><orcidid>0000-0002-2782-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,3320,27146,27923,27924,53790,53792,55554,55564</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29134066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niazi, Muhammad Shaheer</creatorcontrib><title>The Electric Honeycomb; an investigation of the Rose window instability</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow.</description><subject>Electrohydrodynamics</subject><subject>Instability</subject><subject>Physics</subject><subject>Rose Window</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd1rFDEUxQdRbKl98l3mUZCtyeRrgiBIqW2hUGjro4Q7mTvbLLOTNclsGf96s04tWxGf8vXjnJN7iuItJSeU6PpjiD6eUEUEYS-Kw4oIvhCKsJd7-4PiOMYVIYRmSEn1ujioNGWcSHlYnN_dY3nWo03B2fLCDzhZv24-lTCUbthiTG4Jyfmh9F2ZMnvjI5YPbmj9QwZigsb1Lk1vilcd9BGPH9ej4tvXs7vTi8XV9fnl6ZerhRWKpwXoGglSwkCSrqOKEwAUUnLa1Exb1FZoilIgF1UFoCvgtWw1yNoKy6RiR8XlrNt6WJlNcGsIk_HgzO8LH5YGQnK2R1MzDpYLQK4hf9aC7LpWNY1GWjGNMmt9nrU2Y7PG1uKQAvTPRJ-_DO7eLP3W5MCy4joLvH8UCP7HmGdl1i5a7HsY0I_RUC15paqa1Bn9MKM2-BgDdk82lJhdk2bXpJmbzPS7_WRP7J_eMvB9BoKf8ri9dZgms_JjGPLR3Nxe3265y9LZmhLFJJHmp9vMJty4GEfcOe-Z_hWA_E__X5l_AZeWypc</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Niazi, Muhammad Shaheer</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2782-3555</orcidid></search><sort><creationdate>20171001</creationdate><title>The Electric Honeycomb; an investigation of the Rose window instability</title><author>Niazi, Muhammad Shaheer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-a98e0e103a60ff1740aae56641b839ce9c591e65e4522aa92a486d9a68c5c3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electrohydrodynamics</topic><topic>Instability</topic><topic>Physics</topic><topic>Rose Window</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niazi, Muhammad Shaheer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niazi, Muhammad Shaheer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electric Honeycomb; an investigation of the Rose window instability</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>4</volume><issue>10</issue><spage>170503</spage><epage>170503</epage><pages>170503-170503</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>The Rose window instability is a little-explored electrohydrodynamic instability that manifests when a layer of low-conducting oil is placed in an electric field generated by corona discharge in a point-to-plane configuration. Above a critical voltage, the instability starts as a single dimple in the oil layer right below the point electrode and subsequently evolves into a characteristic pattern of polygonal cells. In this study, we experimentally explore governing parameters that guide the instability and document geometric attributes of the characteristic cellular pattern. The driving force for the instability has been attributed to the buildup of charged ions which in turn apply an electric pressure on the oil surface. We confirm the charged surface distribution using thermal imaging and demonstrate that the instability can be locally inhibited by preventing charge buildup under an ion shadow.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29134066</pmid><doi>10.1098/rsos.170503</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2782-3555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2054-5703
ispartof Royal Society open science, 2017-10, Vol.4 (10), p.170503-170503
issn 2054-5703
2054-5703
language eng
recordid cdi_pubmed_primary_29134066
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Royal Society Open Access Journals; PubMed Central Open Access; PubMed Central
subjects Electrohydrodynamics
Instability
Physics
Rose Window
title The Electric Honeycomb; an investigation of the Rose window instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electric%20Honeycomb;%20an%20investigation%20of%20the%20Rose%20window%20instability&rft.jtitle=Royal%20Society%20open%20science&rft.au=Niazi,%20Muhammad%20Shaheer&rft.date=2017-10-01&rft.volume=4&rft.issue=10&rft.spage=170503&rft.epage=170503&rft.pages=170503-170503&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.170503&rft_dat=%3Cproquest_pubme%3E1964272808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964272808&rft_id=info:pmid/29134066&rft_doaj_id=oai_doaj_org_article_834ac45ae49a406ca6ffd7bb9e1239e6&rfr_iscdi=true