Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A

Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a rankin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2018-11, Vol.15 (6), p.2009-2016
Hauptverfasser: Mukund, Kavitha, Ward, Samuel R., Lieber, Richard L., Subramaniam, Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2016
container_issue 6
container_start_page 2009
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 15
creator Mukund, Kavitha
Ward, Samuel R.
Lieber, Richard L.
Subramaniam, Shankar
description Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into five groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes-Dclk1 and Ostalpha-within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.
doi_str_mv 10.1109/TCBB.2017.2763949
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_29053464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8070322</ieee_id><sourcerecordid>1954073274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1d599f77e4dedc65c1f7856f067649748308952ef41359d476228765aa05ff0b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVqs_QARZ8OJla75nc2xL_YCigvUctruJ3dpuapLF9t-7pbUHTzMwz_syPAhdEdwjBKv7yXAw6FFMoEdBMsXVETojQkCqlOTH252LVCjJOug8hDnGlCvMT1GHKiwYl_wMvQ1dOlqvvAmhcnXyYuKP819Jf7XyLi9mSXTJe2zKTVV_JnFmkpG1poghcTYZuNgsqrpZtqnGu-jWVZ32L9CJzRfBXO5nF308jCbDp3T8-vg87I_TgnEVU1IKpSyA4aUpCykKYiET0mIJkivgGcOZEtRYTphQJQdJaQZS5DkW1uIp66K7XW_76HdjQtTLKhRmschr45qgiRIcA6PAW_T2Hzp3ja_b7zQlAhQVANBSZEcV3oXgjdUrXy1zv9EE661uvdWtt7r1Xnebudk3N9OlKQ-JP78tcL0DKmPM4ZxhwIxS9guz-IGh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157925777</pqid></control><display><type>article</type><title>Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A</title><source>IEEE Electronic Library (IEL)</source><creator>Mukund, Kavitha ; Ward, Samuel R. ; Lieber, Richard L. ; Subramaniam, Shankar</creator><creatorcontrib>Mukund, Kavitha ; Ward, Samuel R. ; Lieber, Richard L. ; Subramaniam, Shankar</creatorcontrib><description>Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into five groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes-Dclk1 and Ostalpha-within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2017.2763949</identifier><identifier>PMID: 29053464</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atrophy ; Bioinformatics ; Biomarkers ; botox ; Botulinum toxin type A ; clustering ; Clustering algorithms ; Co-expression networks ; Connectin ; Contraction ; Correlation ; cross sectional temporal data ; Data mining ; Data processing ; Extracellular matrix ; Functional analysis ; Gene expression ; gene ranking ; Genes ; Isoforms ; Metabolism ; muscle ; Muscles ; Myosin ; Network analysis ; Paralysis ; Proteins ; Real-time systems ; Recovery ; Skeletal muscle ; Therapeutic applications ; timecourse ; Transcription</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2018-11, Vol.15 (6), p.2009-2016</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1d599f77e4dedc65c1f7856f067649748308952ef41359d476228765aa05ff0b3</citedby><cites>FETCH-LOGICAL-c349t-1d599f77e4dedc65c1f7856f067649748308952ef41359d476228765aa05ff0b3</cites><orcidid>0000-0002-8059-4659 ; 0000-0002-3570-2315 ; 0000-0002-7203-4520 ; 0000-0002-4470-155X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8070322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8070322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29053464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukund, Kavitha</creatorcontrib><creatorcontrib>Ward, Samuel R.</creatorcontrib><creatorcontrib>Lieber, Richard L.</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><title>Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into five groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes-Dclk1 and Ostalpha-within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.</description><subject>Atrophy</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>botox</subject><subject>Botulinum toxin type A</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Co-expression networks</subject><subject>Connectin</subject><subject>Contraction</subject><subject>Correlation</subject><subject>cross sectional temporal data</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Extracellular matrix</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>gene ranking</subject><subject>Genes</subject><subject>Isoforms</subject><subject>Metabolism</subject><subject>muscle</subject><subject>Muscles</subject><subject>Myosin</subject><subject>Network analysis</subject><subject>Paralysis</subject><subject>Proteins</subject><subject>Real-time systems</subject><subject>Recovery</subject><subject>Skeletal muscle</subject><subject>Therapeutic applications</subject><subject>timecourse</subject><subject>Transcription</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoVqs_QARZ8OJla75nc2xL_YCigvUctruJ3dpuapLF9t-7pbUHTzMwz_syPAhdEdwjBKv7yXAw6FFMoEdBMsXVETojQkCqlOTH252LVCjJOug8hDnGlCvMT1GHKiwYl_wMvQ1dOlqvvAmhcnXyYuKP819Jf7XyLi9mSXTJe2zKTVV_JnFmkpG1poghcTYZuNgsqrpZtqnGu-jWVZ32L9CJzRfBXO5nF308jCbDp3T8-vg87I_TgnEVU1IKpSyA4aUpCykKYiET0mIJkivgGcOZEtRYTphQJQdJaQZS5DkW1uIp66K7XW_76HdjQtTLKhRmschr45qgiRIcA6PAW_T2Hzp3ja_b7zQlAhQVANBSZEcV3oXgjdUrXy1zv9EE661uvdWtt7r1Xnebudk3N9OlKQ-JP78tcL0DKmPM4ZxhwIxS9guz-IGh</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Mukund, Kavitha</creator><creator>Ward, Samuel R.</creator><creator>Lieber, Richard L.</creator><creator>Subramaniam, Shankar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8059-4659</orcidid><orcidid>https://orcid.org/0000-0002-3570-2315</orcidid><orcidid>https://orcid.org/0000-0002-7203-4520</orcidid><orcidid>https://orcid.org/0000-0002-4470-155X</orcidid></search><sort><creationdate>201811</creationdate><title>Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A</title><author>Mukund, Kavitha ; Ward, Samuel R. ; Lieber, Richard L. ; Subramaniam, Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1d599f77e4dedc65c1f7856f067649748308952ef41359d476228765aa05ff0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atrophy</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>botox</topic><topic>Botulinum toxin type A</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Co-expression networks</topic><topic>Connectin</topic><topic>Contraction</topic><topic>Correlation</topic><topic>cross sectional temporal data</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Extracellular matrix</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>gene ranking</topic><topic>Genes</topic><topic>Isoforms</topic><topic>Metabolism</topic><topic>muscle</topic><topic>Muscles</topic><topic>Myosin</topic><topic>Network analysis</topic><topic>Paralysis</topic><topic>Proteins</topic><topic>Real-time systems</topic><topic>Recovery</topic><topic>Skeletal muscle</topic><topic>Therapeutic applications</topic><topic>timecourse</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukund, Kavitha</creatorcontrib><creatorcontrib>Ward, Samuel R.</creatorcontrib><creatorcontrib>Lieber, Richard L.</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mukund, Kavitha</au><au>Ward, Samuel R.</au><au>Lieber, Richard L.</au><au>Subramaniam, Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2018-11</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>2009</spage><epage>2016</epage><pages>2009-2016</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications. The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into five groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes-Dclk1 and Ostalpha-within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29053464</pmid><doi>10.1109/TCBB.2017.2763949</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8059-4659</orcidid><orcidid>https://orcid.org/0000-0002-3570-2315</orcidid><orcidid>https://orcid.org/0000-0002-7203-4520</orcidid><orcidid>https://orcid.org/0000-0002-4470-155X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2018-11, Vol.15 (6), p.2009-2016
issn 1545-5963
1557-9964
language eng
recordid cdi_pubmed_primary_29053464
source IEEE Electronic Library (IEL)
subjects Atrophy
Bioinformatics
Biomarkers
botox
Botulinum toxin type A
clustering
Clustering algorithms
Co-expression networks
Connectin
Contraction
Correlation
cross sectional temporal data
Data mining
Data processing
Extracellular matrix
Functional analysis
Gene expression
gene ranking
Genes
Isoforms
Metabolism
muscle
Muscles
Myosin
Network analysis
Paralysis
Proteins
Real-time systems
Recovery
Skeletal muscle
Therapeutic applications
timecourse
Transcription
title Co-Expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-Expression%20Network%20Approach%20to%20Studying%20the%20Effects%20of%20Botulinum%20Neurotoxin-A&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Mukund,%20Kavitha&rft.date=2018-11&rft.volume=15&rft.issue=6&rft.spage=2009&rft.epage=2016&rft.pages=2009-2016&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2017.2763949&rft_dat=%3Cproquest_RIE%3E1954073274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157925777&rft_id=info:pmid/29053464&rft_ieee_id=8070322&rfr_iscdi=true