Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2017-11, Vol.29 (45), p.455802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 45 |
container_start_page | 455802 |
container_title | Journal of physics. Condensed matter |
container_volume | 29 |
creator | Owerre, S A Nsofini, J |
description | Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z
symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z
anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. |
doi_str_mv | 10.1088/1361-648X/aa8dcb |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_29049033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29049033</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-fdf051bfe79c8d558530a837f72fc8a6ce7c107f50be115c4f4271fdc21d37df3</originalsourceid><addsrcrecordid>eNo9j8tOwzAURC0kREthzwr5B0KvYzt2lqg8pSIWgMSuur62S1BihyZdlK-n4rWa0ehoNMPYmYALAdbOhaxEUSn7Oke0ntwBm_5HE3Y8DO8AoKxUR2xS1qBqkHLKHp4-tiF8Bs-vmg0Sx-T5mPvc5nVD2PIO1ymngTeJI3d5yKkh_pZT2FHuHM_9-I21OO5NOGGHEdshnP7qjL3cXD8v7orl4-394nJZ9PupYxF9BC1cDKYm67W2WgJaaaIpI1msKBgSYKIGF4TQpKIqjYieSuGl8VHO2PlPb791XfCrftN0uNmt_n7JLxkfT7k</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Owerre, S A ; Nsofini, J</creator><creatorcontrib>Owerre, S A ; Nsofini, J</creatorcontrib><description>Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z
symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z
anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.</description><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aa8dcb</identifier><identifier>PMID: 29049033</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of physics. Condensed matter, 2017-11, Vol.29 (45), p.455802</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29049033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owerre, S A</creatorcontrib><creatorcontrib>Nsofini, J</creatorcontrib><title>Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z
symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z
anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.</description><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOwzAURC0kREthzwr5B0KvYzt2lqg8pSIWgMSuur62S1BihyZdlK-n4rWa0ehoNMPYmYALAdbOhaxEUSn7Oke0ntwBm_5HE3Y8DO8AoKxUR2xS1qBqkHLKHp4-tiF8Bs-vmg0Sx-T5mPvc5nVD2PIO1ymngTeJI3d5yKkh_pZT2FHuHM_9-I21OO5NOGGHEdshnP7qjL3cXD8v7orl4-394nJZ9PupYxF9BC1cDKYm67W2WgJaaaIpI1msKBgSYKIGF4TQpKIqjYieSuGl8VHO2PlPb791XfCrftN0uNmt_n7JLxkfT7k</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Owerre, S A</creator><creator>Nsofini, J</creator><scope>NPM</scope></search><sort><creationdate>20171115</creationdate><title>Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice</title><author>Owerre, S A ; Nsofini, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-fdf051bfe79c8d558530a837f72fc8a6ce7c107f50be115c4f4271fdc21d37df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owerre, S A</creatorcontrib><creatorcontrib>Nsofini, J</creatorcontrib><collection>PubMed</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owerre, S A</au><au>Nsofini, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2017-11-15</date><risdate>2017</risdate><volume>29</volume><issue>45</issue><spage>455802</spage><pages>455802-</pages><eissn>1361-648X</eissn><abstract>Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z
symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z
anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.</abstract><cop>England</cop><pmid>29049033</pmid><doi>10.1088/1361-648X/aa8dcb</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1361-648X |
ispartof | Journal of physics. Condensed matter, 2017-11, Vol.29 (45), p.455802 |
issn | 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_29049033 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squeezed%20Dirac%20and%20topological%20magnons%20in%20a%20bosonic%20honeycomb%20optical%20lattice&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Owerre,%20S%20A&rft.date=2017-11-15&rft.volume=29&rft.issue=45&rft.spage=455802&rft.pages=455802-&rft.eissn=1361-648X&rft_id=info:doi/10.1088/1361-648X/aa8dcb&rft_dat=%3Cpubmed%3E29049033%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29049033&rfr_iscdi=true |