MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES

During preclinical drug development, the immune system is specifically evaluated after prolonged treatment with drug candidates, because the immune system may be an important target system. The response of antibodies against a T-cell-dependent antigen is recommenced by the FDA and EMEA for the evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2005, Vol.15 (2), p.205
Hauptverfasser: Shkedy, Ziv, Straetemans, Roel, Molenberghs, Geert, Desmidt, Miek, Vinken, Petra, Goeminne, Nick, Coussement, Werner, Poel, Bob Van Den, Bijnens, Luc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 205
container_title Journal of biopharmaceutical statistics
container_volume 15
creator Shkedy, Ziv
Straetemans, Roel
Molenberghs, Geert
Desmidt, Miek
Vinken, Petra
Goeminne, Nick
Coussement, Werner
Poel, Bob Van Den
Bijnens, Luc
description During preclinical drug development, the immune system is specifically evaluated after prolonged treatment with drug candidates, because the immune system may be an important target system. The response of antibodies against a T-cell-dependent antigen is recommenced by the FDA and EMEA for the evaluation of immunosuppression/enhancement. For that reason, we developed a semiquantitative enzyme-linked immunosorbent assay to measure antibodies against keyhole limpet hemocyanin. To our knowledge, the analysis of this kind of data is at this moment not yet fully explored. In this article, we describe two approaches for modeling immunotoxic data using nonlinear models. The first is a two-stage model in which we fit an individual nonlinear model for each animal in the first stage, and the second stage consists of testing possible treatment effects using the individual maximum likelihood estimates obtained in the first stage. In the second approach, the inference about treatment effects is based on a nonlinear mixed model, which accounts for heterogeneity between animals. In both approaches, we use a three-parameter logistic model for the mean structure.
doi_str_mv 10.1081/BIP-200048815
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28881177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28881177</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-ad305cc5e03a6a9f14347578897b13d6fd99af05a8cb848cda812718cec9c9e83</originalsourceid><addsrcrecordid>eNo1j0FPhDAUhBsT466rR6-mf6DaB3RbjgiFbQRKbIl725QCicaNZFcP_ntR19NkMt-8vEHoBugdUAH3D6ohAaU0EgLYGVoCCyhhHGCBLo_HV0qBcRFdoEUgZgI4X6L3SmeyVHWBk9oq8lhu8GxNgrPEJrg1P4l91sTYpJAzk-FKbWWGZZ7L1Br8WzdY1di0TaOfLNY5VlXV1trqrUp1qQuVJiU2ts2UNFfofHRvx-H6pCvU5tKmG3LiyDQv-SCuDynzng00dGsXjxCFEZ-fFzHvIOzXYx_HbqTMCd-JSPjeCQg4CD_42MeDCFfo9u_u9Nnth343HV727vC1-18efgPDe09L</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES</title><source>Business Source Complete</source><creator>Shkedy, Ziv ; Straetemans, Roel ; Molenberghs, Geert ; Desmidt, Miek ; Vinken, Petra ; Goeminne, Nick ; Coussement, Werner ; Poel, Bob Van Den ; Bijnens, Luc</creator><creatorcontrib>Shkedy, Ziv ; Straetemans, Roel ; Molenberghs, Geert ; Desmidt, Miek ; Vinken, Petra ; Goeminne, Nick ; Coussement, Werner ; Poel, Bob Van Den ; Bijnens, Luc</creatorcontrib><description>During preclinical drug development, the immune system is specifically evaluated after prolonged treatment with drug candidates, because the immune system may be an important target system. The response of antibodies against a T-cell-dependent antigen is recommenced by the FDA and EMEA for the evaluation of immunosuppression/enhancement. For that reason, we developed a semiquantitative enzyme-linked immunosorbent assay to measure antibodies against keyhole limpet hemocyanin. To our knowledge, the analysis of this kind of data is at this moment not yet fully explored. In this article, we describe two approaches for modeling immunotoxic data using nonlinear models. The first is a two-stage model in which we fit an individual nonlinear model for each animal in the first stage, and the second stage consists of testing possible treatment effects using the individual maximum likelihood estimates obtained in the first stage. In the second approach, the inference about treatment effects is based on a nonlinear mixed model, which accounts for heterogeneity between animals. In both approaches, we use a three-parameter logistic model for the mean structure.</description><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1081/BIP-200048815</identifier><identifier>PMID: 28881177</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of biopharmaceutical statistics, 2005, Vol.15 (2), p.205</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28881177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shkedy, Ziv</creatorcontrib><creatorcontrib>Straetemans, Roel</creatorcontrib><creatorcontrib>Molenberghs, Geert</creatorcontrib><creatorcontrib>Desmidt, Miek</creatorcontrib><creatorcontrib>Vinken, Petra</creatorcontrib><creatorcontrib>Goeminne, Nick</creatorcontrib><creatorcontrib>Coussement, Werner</creatorcontrib><creatorcontrib>Poel, Bob Van Den</creatorcontrib><creatorcontrib>Bijnens, Luc</creatorcontrib><title>MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>During preclinical drug development, the immune system is specifically evaluated after prolonged treatment with drug candidates, because the immune system may be an important target system. The response of antibodies against a T-cell-dependent antigen is recommenced by the FDA and EMEA for the evaluation of immunosuppression/enhancement. For that reason, we developed a semiquantitative enzyme-linked immunosorbent assay to measure antibodies against keyhole limpet hemocyanin. To our knowledge, the analysis of this kind of data is at this moment not yet fully explored. In this article, we describe two approaches for modeling immunotoxic data using nonlinear models. The first is a two-stage model in which we fit an individual nonlinear model for each animal in the first stage, and the second stage consists of testing possible treatment effects using the individual maximum likelihood estimates obtained in the first stage. In the second approach, the inference about treatment effects is based on a nonlinear mixed model, which accounts for heterogeneity between animals. In both approaches, we use a three-parameter logistic model for the mean structure.</description><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1j0FPhDAUhBsT466rR6-mf6DaB3RbjgiFbQRKbIl725QCicaNZFcP_ntR19NkMt-8vEHoBugdUAH3D6ohAaU0EgLYGVoCCyhhHGCBLo_HV0qBcRFdoEUgZgI4X6L3SmeyVHWBk9oq8lhu8GxNgrPEJrg1P4l91sTYpJAzk-FKbWWGZZ7L1Br8WzdY1di0TaOfLNY5VlXV1trqrUp1qQuVJiU2ts2UNFfofHRvx-H6pCvU5tKmG3LiyDQv-SCuDynzng00dGsXjxCFEZ-fFzHvIOzXYx_HbqTMCd-JSPjeCQg4CD_42MeDCFfo9u_u9Nnth343HV727vC1-18efgPDe09L</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Shkedy, Ziv</creator><creator>Straetemans, Roel</creator><creator>Molenberghs, Geert</creator><creator>Desmidt, Miek</creator><creator>Vinken, Petra</creator><creator>Goeminne, Nick</creator><creator>Coussement, Werner</creator><creator>Poel, Bob Van Den</creator><creator>Bijnens, Luc</creator><scope>NPM</scope></search><sort><creationdate>2005</creationdate><title>MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES</title><author>Shkedy, Ziv ; Straetemans, Roel ; Molenberghs, Geert ; Desmidt, Miek ; Vinken, Petra ; Goeminne, Nick ; Coussement, Werner ; Poel, Bob Van Den ; Bijnens, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-ad305cc5e03a6a9f14347578897b13d6fd99af05a8cb848cda812718cec9c9e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shkedy, Ziv</creatorcontrib><creatorcontrib>Straetemans, Roel</creatorcontrib><creatorcontrib>Molenberghs, Geert</creatorcontrib><creatorcontrib>Desmidt, Miek</creatorcontrib><creatorcontrib>Vinken, Petra</creatorcontrib><creatorcontrib>Goeminne, Nick</creatorcontrib><creatorcontrib>Coussement, Werner</creatorcontrib><creatorcontrib>Poel, Bob Van Den</creatorcontrib><creatorcontrib>Bijnens, Luc</creatorcontrib><collection>PubMed</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shkedy, Ziv</au><au>Straetemans, Roel</au><au>Molenberghs, Geert</au><au>Desmidt, Miek</au><au>Vinken, Petra</au><au>Goeminne, Nick</au><au>Coussement, Werner</au><au>Poel, Bob Van Den</au><au>Bijnens, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2005</date><risdate>2005</risdate><volume>15</volume><issue>2</issue><spage>205</spage><pages>205-</pages><eissn>1520-5711</eissn><abstract>During preclinical drug development, the immune system is specifically evaluated after prolonged treatment with drug candidates, because the immune system may be an important target system. The response of antibodies against a T-cell-dependent antigen is recommenced by the FDA and EMEA for the evaluation of immunosuppression/enhancement. For that reason, we developed a semiquantitative enzyme-linked immunosorbent assay to measure antibodies against keyhole limpet hemocyanin. To our knowledge, the analysis of this kind of data is at this moment not yet fully explored. In this article, we describe two approaches for modeling immunotoxic data using nonlinear models. The first is a two-stage model in which we fit an individual nonlinear model for each animal in the first stage, and the second stage consists of testing possible treatment effects using the individual maximum likelihood estimates obtained in the first stage. In the second approach, the inference about treatment effects is based on a nonlinear mixed model, which accounts for heterogeneity between animals. In both approaches, we use a three-parameter logistic model for the mean structure.</abstract><cop>England</cop><pmid>28881177</pmid><doi>10.1081/BIP-200048815</doi></addata></record>
fulltext fulltext
identifier EISSN: 1520-5711
ispartof Journal of biopharmaceutical statistics, 2005, Vol.15 (2), p.205
issn 1520-5711
language eng
recordid cdi_pubmed_primary_28881177
source Business Source Complete
title MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20ANTI-KLH%20ELISA%20DATA%20USING%20TWO-STAGE%20AND%20MIXED%20EFFECTS%20MODELS%20IN%20SUPPORT%20OF%20IMMUNOTOXICOLOGICAL%20STUDIES&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Shkedy,%20Ziv&rft.date=2005&rft.volume=15&rft.issue=2&rft.spage=205&rft.pages=205-&rft.eissn=1520-5711&rft_id=info:doi/10.1081/BIP-200048815&rft_dat=%3Cpubmed%3E28881177%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28881177&rfr_iscdi=true