Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering

Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofabrication 2017-08, Vol.9 (3), p.035007-035007
Hauptverfasser: Henry, Jeffrey J D, Yu, Jian, Wang, Aijun, Lee, Randall, Fang, Jun, Li, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035007
container_issue 3
container_start_page 035007
container_title Biofabrication
container_volume 9
creator Henry, Jeffrey J D
Yu, Jian
Wang, Aijun
Lee, Randall
Fang, Jun
Li, Song
description Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.
doi_str_mv 10.1088/1758-5090/aa834b
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_28817384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28817384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-36e46c037d7fdcb40e6097a6f9683a4d395d20557125e0a2b39c78e707e309803</originalsourceid><addsrcrecordid>eNp9kUlLxDAUx4MoLqN3T5KLN0dfJ02TXgQRNxC86Dmk6Usn0klK0gril7fj6KggnrK8_wK_R8hhBqcZSHmWCS6nHEo401qyvNogu-uvzR_3HbKX0jNAwXmRbZOdmZSZYDLfJW9XvnEeMTrf0H6OdIFmrr0zuqXa17RyoQ3Nx7OLocPYO0w0WOq1D9ZVMQyJvuhkhlZH2kRt-0RtiNR5mlw_fM96l9KAFL_79smW1W3Cg89zQp6urx4vb6f3Dzd3lxf3U8MB-ikrMC8MMFELW5sqByygFLqwZSGZzmtW8noGnItsxhH0rGKlERIFCGRQSmATcr7K7YZqgbVB30fdqi66hY6vKminfk-8m6smvCguc8HGkgmBVYCJIaWIdu3NQC0XoZak1ZK0Wi1itBz97FwbvsiPgpOVwIVOPYch-hHBf3nHf8grq0rFFLARlFBdbdk7VyiiaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Henry, Jeffrey J D ; Yu, Jian ; Wang, Aijun ; Lee, Randall ; Fang, Jun ; Li, Song</creator><creatorcontrib>Henry, Jeffrey J D ; Yu, Jian ; Wang, Aijun ; Lee, Randall ; Fang, Jun ; Li, Song</creatorcontrib><description>Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.</description><identifier>ISSN: 1758-5090</identifier><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/aa834b</identifier><identifier>PMID: 28817384</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Antithrombins - pharmacology ; Blood Vessel Prosthesis ; Collagen - metabolism ; Elastin - metabolism ; electrospinning ; endothelialization ; Endothelium - drug effects ; Endothelium - metabolism ; Extracellular Matrix - metabolism ; heparin ; Heparin - pharmacology ; Humans ; Immobilized Proteins - metabolism ; Male ; Mechanical Phenomena ; Myocytes, Smooth Muscle - metabolism ; Nanofibers - chemistry ; polycaprolactone ; Rats ; tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular Endothelial Growth Factor A - metabolism ; vascular endothelial growth factors ; vascular grafts ; Vascular Patency - drug effects</subject><ispartof>Biofabrication, 2017-08, Vol.9 (3), p.035007-035007</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-36e46c037d7fdcb40e6097a6f9683a4d395d20557125e0a2b39c78e707e309803</citedby><cites>FETCH-LOGICAL-c500t-36e46c037d7fdcb40e6097a6f9683a4d395d20557125e0a2b39c78e707e309803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/aa834b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28817384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry, Jeffrey J D</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Wang, Aijun</creatorcontrib><creatorcontrib>Lee, Randall</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><title>Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.</description><subject>Animals</subject><subject>Antithrombins - pharmacology</subject><subject>Blood Vessel Prosthesis</subject><subject>Collagen - metabolism</subject><subject>Elastin - metabolism</subject><subject>electrospinning</subject><subject>endothelialization</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>heparin</subject><subject>Heparin - pharmacology</subject><subject>Humans</subject><subject>Immobilized Proteins - metabolism</subject><subject>Male</subject><subject>Mechanical Phenomena</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Nanofibers - chemistry</subject><subject>polycaprolactone</subject><subject>Rats</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>vascular endothelial growth factors</subject><subject>vascular grafts</subject><subject>Vascular Patency - drug effects</subject><issn>1758-5090</issn><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlLxDAUx4MoLqN3T5KLN0dfJ02TXgQRNxC86Dmk6Usn0klK0gril7fj6KggnrK8_wK_R8hhBqcZSHmWCS6nHEo401qyvNogu-uvzR_3HbKX0jNAwXmRbZOdmZSZYDLfJW9XvnEeMTrf0H6OdIFmrr0zuqXa17RyoQ3Nx7OLocPYO0w0WOq1D9ZVMQyJvuhkhlZH2kRt-0RtiNR5mlw_fM96l9KAFL_79smW1W3Cg89zQp6urx4vb6f3Dzd3lxf3U8MB-ikrMC8MMFELW5sqByygFLqwZSGZzmtW8noGnItsxhH0rGKlERIFCGRQSmATcr7K7YZqgbVB30fdqi66hY6vKminfk-8m6smvCguc8HGkgmBVYCJIaWIdu3NQC0XoZak1ZK0Wi1itBz97FwbvsiPgpOVwIVOPYch-hHBf3nHf8grq0rFFLARlFBdbdk7VyiiaQ</recordid><startdate>20170817</startdate><enddate>20170817</enddate><creator>Henry, Jeffrey J D</creator><creator>Yu, Jian</creator><creator>Wang, Aijun</creator><creator>Lee, Randall</creator><creator>Fang, Jun</creator><creator>Li, Song</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170817</creationdate><title>Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering</title><author>Henry, Jeffrey J D ; Yu, Jian ; Wang, Aijun ; Lee, Randall ; Fang, Jun ; Li, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-36e46c037d7fdcb40e6097a6f9683a4d395d20557125e0a2b39c78e707e309803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antithrombins - pharmacology</topic><topic>Blood Vessel Prosthesis</topic><topic>Collagen - metabolism</topic><topic>Elastin - metabolism</topic><topic>electrospinning</topic><topic>endothelialization</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>heparin</topic><topic>Heparin - pharmacology</topic><topic>Humans</topic><topic>Immobilized Proteins - metabolism</topic><topic>Male</topic><topic>Mechanical Phenomena</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Nanofibers - chemistry</topic><topic>polycaprolactone</topic><topic>Rats</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>vascular endothelial growth factors</topic><topic>vascular grafts</topic><topic>Vascular Patency - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, Jeffrey J D</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Wang, Aijun</creatorcontrib><creatorcontrib>Lee, Randall</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry, Jeffrey J D</au><au>Yu, Jian</au><au>Wang, Aijun</au><au>Lee, Randall</au><au>Fang, Jun</au><au>Li, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2017-08-17</date><risdate>2017</risdate><volume>9</volume><issue>3</issue><spage>035007</spage><epage>035007</epage><pages>035007-035007</pages><issn>1758-5090</issn><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28817384</pmid><doi>10.1088/1758-5090/aa834b</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-5090
ispartof Biofabrication, 2017-08, Vol.9 (3), p.035007-035007
issn 1758-5090
1758-5082
1758-5090
language eng
recordid cdi_pubmed_primary_28817384
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Animals
Antithrombins - pharmacology
Blood Vessel Prosthesis
Collagen - metabolism
Elastin - metabolism
electrospinning
endothelialization
Endothelium - drug effects
Endothelium - metabolism
Extracellular Matrix - metabolism
heparin
Heparin - pharmacology
Humans
Immobilized Proteins - metabolism
Male
Mechanical Phenomena
Myocytes, Smooth Muscle - metabolism
Nanofibers - chemistry
polycaprolactone
Rats
tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Vascular Endothelial Growth Factor A - metabolism
vascular endothelial growth factors
vascular grafts
Vascular Patency - drug effects
title Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20mechanical%20and%20biological%20properties%20of%20nanofibrous%20vascular%20grafts%20for%20in%20situ%20vascular%20tissue%20engineering&rft.jtitle=Biofabrication&rft.au=Henry,%20Jeffrey%20J%20D&rft.date=2017-08-17&rft.volume=9&rft.issue=3&rft.spage=035007&rft.epage=035007&rft.pages=035007-035007&rft.issn=1758-5090&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/aa834b&rft_dat=%3Cpubmed_cross%3E28817384%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28817384&rfr_iscdi=true