Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks
Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2018-07, Vol.22 (4), p.1218-1226 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1226 |
---|---|
container_issue | 4 |
container_start_page | 1218 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 22 |
creator | Yap, Moi Hoon Pons, Gerard Marti, Joan Ganau, Sergi Sentis, Melcior Zwiggelaar, Reyer Davison, Adrian K. Marti, Robert |
description | Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure. |
doi_str_mv | 10.1109/JBHI.2017.2731873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28796627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8003418</ieee_id><sourcerecordid>1928512770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujEYL8AGNiNvHiBey0u_04An6AIRoTOTfdpWsWly22XY3_3iLgwV5mMn3mbfMgdA54CIDlzeN4OhsSDHxIOAXB6RHqEmBiQAgWx4ceZNpBfe9XOB4RR5Kdog4RXDJGeBe9jNpg1zqYZTJ2RvuQLOrgtLdts0zmxle28cmtCaYIsU0WvmrekoltPm3dbie6Tp5M635L-LLu3Z-hk1LX3vT3tYcW93evk-lg_vwwm4zmgyLDLAzyjOJCyJID5RpDxnMJBKAQGcgipTloJkiRpYyUpcxkSUu-xCannGuNU5HTHrre5W6c_WiND2pd-cLUtW6Mbb0CSWIW4RxH9OofurKti3_3igBP4yNMskjBjiqc9d6ZUm1ctdbuWwFWW-Vqq1xtlau98rhzuU9u87VZ_m0cBEfgYgdUxpi_a4ExTUHQH28Xg5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546696</pqid></control><display><type>article</type><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</creator><creatorcontrib>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</creatorcontrib><description>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2731873</identifier><identifier>PMID: 28796627</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Benign ; Breast ; Breast - diagnostic imaging ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; convolutional neural networks ; Databases, Factual ; Datasets ; Deformation ; Female ; Filtering ; Formability ; Fractals ; Humans ; Image acquisition ; Image Interpretation, Computer-Assisted - methods ; Imaging ; lesion detection ; Lesions ; Machine learning ; Neural networks ; Neural Networks (Computer) ; State of the art ; Transfer learning ; Ultrasonic imaging ; Ultrasonography, Mammary - methods ; Ultrasound ; ultrasound imaging</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-07, Vol.22 (4), p.1218-1226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</citedby><cites>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</cites><orcidid>0000-0002-8080-2710 ; 0000-0001-7681-4287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8003418$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28796627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Pons, Gerard</creatorcontrib><creatorcontrib>Marti, Joan</creatorcontrib><creatorcontrib>Ganau, Sergi</creatorcontrib><creatorcontrib>Sentis, Melcior</creatorcontrib><creatorcontrib>Zwiggelaar, Reyer</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Marti, Robert</creatorcontrib><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Benign</subject><subject>Breast</subject><subject>Breast - diagnostic imaging</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>convolutional neural networks</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Female</subject><subject>Filtering</subject><subject>Formability</subject><subject>Fractals</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>lesion detection</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>State of the art</subject><subject>Transfer learning</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Mammary - methods</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PAjEQhhujEYL8AGNiNvHiBey0u_04An6AIRoTOTfdpWsWly22XY3_3iLgwV5mMn3mbfMgdA54CIDlzeN4OhsSDHxIOAXB6RHqEmBiQAgWx4ceZNpBfe9XOB4RR5Kdog4RXDJGeBe9jNpg1zqYZTJ2RvuQLOrgtLdts0zmxle28cmtCaYIsU0WvmrekoltPm3dbie6Tp5M635L-LLu3Z-hk1LX3vT3tYcW93evk-lg_vwwm4zmgyLDLAzyjOJCyJID5RpDxnMJBKAQGcgipTloJkiRpYyUpcxkSUu-xCannGuNU5HTHrre5W6c_WiND2pd-cLUtW6Mbb0CSWIW4RxH9OofurKti3_3igBP4yNMskjBjiqc9d6ZUm1ctdbuWwFWW-Vqq1xtlau98rhzuU9u87VZ_m0cBEfgYgdUxpi_a4ExTUHQH28Xg5U</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Yap, Moi Hoon</creator><creator>Pons, Gerard</creator><creator>Marti, Joan</creator><creator>Ganau, Sergi</creator><creator>Sentis, Melcior</creator><creator>Zwiggelaar, Reyer</creator><creator>Davison, Adrian K.</creator><creator>Marti, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8080-2710</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid></search><sort><creationdate>201807</creationdate><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><author>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Benign</topic><topic>Breast</topic><topic>Breast - diagnostic imaging</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>convolutional neural networks</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Female</topic><topic>Filtering</topic><topic>Formability</topic><topic>Fractals</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>lesion detection</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>State of the art</topic><topic>Transfer learning</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Mammary - methods</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Pons, Gerard</creatorcontrib><creatorcontrib>Marti, Joan</creatorcontrib><creatorcontrib>Ganau, Sergi</creatorcontrib><creatorcontrib>Sentis, Melcior</creatorcontrib><creatorcontrib>Zwiggelaar, Reyer</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Marti, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Moi Hoon</au><au>Pons, Gerard</au><au>Marti, Joan</au><au>Ganau, Sergi</au><au>Sentis, Melcior</au><au>Zwiggelaar, Reyer</au><au>Davison, Adrian K.</au><au>Marti, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-07</date><risdate>2018</risdate><volume>22</volume><issue>4</issue><spage>1218</spage><epage>1226</epage><pages>1218-1226</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28796627</pmid><doi>10.1109/JBHI.2017.2731873</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8080-2710</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2018-07, Vol.22 (4), p.1218-1226 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_28796627 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Automation Benign Breast Breast - diagnostic imaging Breast cancer Breast Neoplasms - diagnostic imaging convolutional neural networks Databases, Factual Datasets Deformation Female Filtering Formability Fractals Humans Image acquisition Image Interpretation, Computer-Assisted - methods Imaging lesion detection Lesions Machine learning Neural networks Neural Networks (Computer) State of the art Transfer learning Ultrasonic imaging Ultrasonography, Mammary - methods Ultrasound ultrasound imaging |
title | Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Breast%20Ultrasound%20Lesions%20Detection%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yap,%20Moi%20Hoon&rft.date=2018-07&rft.volume=22&rft.issue=4&rft.spage=1218&rft.epage=1226&rft.pages=1218-1226&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2731873&rft_dat=%3Cproquest_pubme%3E1928512770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546696&rft_id=info:pmid/28796627&rft_ieee_id=8003418&rfr_iscdi=true |