Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks

Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2018-07, Vol.22 (4), p.1218-1226
Hauptverfasser: Yap, Moi Hoon, Pons, Gerard, Marti, Joan, Ganau, Sergi, Sentis, Melcior, Zwiggelaar, Reyer, Davison, Adrian K., Marti, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 4
container_start_page 1218
container_title IEEE journal of biomedical and health informatics
container_volume 22
creator Yap, Moi Hoon
Pons, Gerard
Marti, Joan
Ganau, Sergi
Sentis, Melcior
Zwiggelaar, Reyer
Davison, Adrian K.
Marti, Robert
description Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.
doi_str_mv 10.1109/JBHI.2017.2731873
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28796627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8003418</ieee_id><sourcerecordid>1928512770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujEYL8AGNiNvHiBey0u_04An6AIRoTOTfdpWsWly22XY3_3iLgwV5mMn3mbfMgdA54CIDlzeN4OhsSDHxIOAXB6RHqEmBiQAgWx4ceZNpBfe9XOB4RR5Kdog4RXDJGeBe9jNpg1zqYZTJ2RvuQLOrgtLdts0zmxle28cmtCaYIsU0WvmrekoltPm3dbie6Tp5M635L-LLu3Z-hk1LX3vT3tYcW93evk-lg_vwwm4zmgyLDLAzyjOJCyJID5RpDxnMJBKAQGcgipTloJkiRpYyUpcxkSUu-xCannGuNU5HTHrre5W6c_WiND2pd-cLUtW6Mbb0CSWIW4RxH9OofurKti3_3igBP4yNMskjBjiqc9d6ZUm1ctdbuWwFWW-Vqq1xtlau98rhzuU9u87VZ_m0cBEfgYgdUxpi_a4ExTUHQH28Xg5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546696</pqid></control><display><type>article</type><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</creator><creatorcontrib>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</creatorcontrib><description>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2731873</identifier><identifier>PMID: 28796627</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Benign ; Breast ; Breast - diagnostic imaging ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; convolutional neural networks ; Databases, Factual ; Datasets ; Deformation ; Female ; Filtering ; Formability ; Fractals ; Humans ; Image acquisition ; Image Interpretation, Computer-Assisted - methods ; Imaging ; lesion detection ; Lesions ; Machine learning ; Neural networks ; Neural Networks (Computer) ; State of the art ; Transfer learning ; Ultrasonic imaging ; Ultrasonography, Mammary - methods ; Ultrasound ; ultrasound imaging</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-07, Vol.22 (4), p.1218-1226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</citedby><cites>FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</cites><orcidid>0000-0002-8080-2710 ; 0000-0001-7681-4287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8003418$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28796627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Pons, Gerard</creatorcontrib><creatorcontrib>Marti, Joan</creatorcontrib><creatorcontrib>Ganau, Sergi</creatorcontrib><creatorcontrib>Sentis, Melcior</creatorcontrib><creatorcontrib>Zwiggelaar, Reyer</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Marti, Robert</creatorcontrib><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Benign</subject><subject>Breast</subject><subject>Breast - diagnostic imaging</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>convolutional neural networks</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Female</subject><subject>Filtering</subject><subject>Formability</subject><subject>Fractals</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>lesion detection</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>State of the art</subject><subject>Transfer learning</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Mammary - methods</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PAjEQhhujEYL8AGNiNvHiBey0u_04An6AIRoTOTfdpWsWly22XY3_3iLgwV5mMn3mbfMgdA54CIDlzeN4OhsSDHxIOAXB6RHqEmBiQAgWx4ceZNpBfe9XOB4RR5Kdog4RXDJGeBe9jNpg1zqYZTJ2RvuQLOrgtLdts0zmxle28cmtCaYIsU0WvmrekoltPm3dbie6Tp5M635L-LLu3Z-hk1LX3vT3tYcW93evk-lg_vwwm4zmgyLDLAzyjOJCyJID5RpDxnMJBKAQGcgipTloJkiRpYyUpcxkSUu-xCannGuNU5HTHrre5W6c_WiND2pd-cLUtW6Mbb0CSWIW4RxH9OofurKti3_3igBP4yNMskjBjiqc9d6ZUm1ctdbuWwFWW-Vqq1xtlau98rhzuU9u87VZ_m0cBEfgYgdUxpi_a4ExTUHQH28Xg5U</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Yap, Moi Hoon</creator><creator>Pons, Gerard</creator><creator>Marti, Joan</creator><creator>Ganau, Sergi</creator><creator>Sentis, Melcior</creator><creator>Zwiggelaar, Reyer</creator><creator>Davison, Adrian K.</creator><creator>Marti, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8080-2710</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid></search><sort><creationdate>201807</creationdate><title>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</title><author>Yap, Moi Hoon ; Pons, Gerard ; Marti, Joan ; Ganau, Sergi ; Sentis, Melcior ; Zwiggelaar, Reyer ; Davison, Adrian K. ; Marti, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-b530c89f7137a0157b91211c8519c43b1a682c5462ff959f3f7d0eb377aa048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Benign</topic><topic>Breast</topic><topic>Breast - diagnostic imaging</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>convolutional neural networks</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Female</topic><topic>Filtering</topic><topic>Formability</topic><topic>Fractals</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>lesion detection</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>State of the art</topic><topic>Transfer learning</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Mammary - methods</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Pons, Gerard</creatorcontrib><creatorcontrib>Marti, Joan</creatorcontrib><creatorcontrib>Ganau, Sergi</creatorcontrib><creatorcontrib>Sentis, Melcior</creatorcontrib><creatorcontrib>Zwiggelaar, Reyer</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Marti, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Moi Hoon</au><au>Pons, Gerard</au><au>Marti, Joan</au><au>Ganau, Sergi</au><au>Sentis, Melcior</au><au>Zwiggelaar, Reyer</au><au>Davison, Adrian K.</au><au>Marti, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-07</date><risdate>2018</risdate><volume>22</volume><issue>4</issue><spage>1218</spage><epage>1226</epage><pages>1218-1226</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28796627</pmid><doi>10.1109/JBHI.2017.2731873</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8080-2710</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2018-07, Vol.22 (4), p.1218-1226
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_28796627
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Automation
Benign
Breast
Breast - diagnostic imaging
Breast cancer
Breast Neoplasms - diagnostic imaging
convolutional neural networks
Databases, Factual
Datasets
Deformation
Female
Filtering
Formability
Fractals
Humans
Image acquisition
Image Interpretation, Computer-Assisted - methods
Imaging
lesion detection
Lesions
Machine learning
Neural networks
Neural Networks (Computer)
State of the art
Transfer learning
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
ultrasound imaging
title Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Breast%20Ultrasound%20Lesions%20Detection%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yap,%20Moi%20Hoon&rft.date=2018-07&rft.volume=22&rft.issue=4&rft.spage=1218&rft.epage=1226&rft.pages=1218-1226&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2731873&rft_dat=%3Cproquest_pubme%3E1928512770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546696&rft_id=info:pmid/28796627&rft_ieee_id=8003418&rfr_iscdi=true