Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000

We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS ) - silicon dioxide (SiO ) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-08, Vol.7 (1), p.7251
Hauptverfasser: Hammer, Sebastian, Mangold, H Moritz, Nguyen, Ariana E, Martinez-Ta, Dominic, Naghibi Alvillar, Sahar, Bartels, Ludwig, Krenner, Hubert J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 7251
container_title Scientific reports
container_volume 7
creator Hammer, Sebastian
Mangold, H Moritz
Nguyen, Ariana E
Martinez-Ta, Dominic
Naghibi Alvillar, Sahar
Bartels, Ludwig
Krenner, Hubert J
description We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS ) - silicon dioxide (SiO ) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer; it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for on-chip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration; our findings suggest feasibility of cavity based line-narrowing in MoS -based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing.
doi_str_mv 10.1038/s41598-017-07379-2
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28775371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28775371</sourcerecordid><originalsourceid>FETCH-pubmed_primary_287753713</originalsourceid><addsrcrecordid>eNqFjstqwzAUREWhNKHND3RR7g-o0cNG9jKEmGzaUpx9uJblRsWRjKQ8DP34utCuO5sDM7M4hDxy9syZLJYx43lZUMYVZUqqkoobMhcsy6mQQszIIsZPNiUXZcbLOzIThVK5VHxOvmqNPTa9AXQt7AK62JlAq2AMVNgEqzFZ78B38OJrELCs7duE7ThtLbyi88PBJ--shjWebRphFQKOES42HeD9hP1PV6FOPkTYXLUxrXUfkE0-D-S2wz6axS_vyVO12a23dDg1R9Puh2CPGMb9n6789_ANZPhQEw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Hammer, Sebastian ; Mangold, H Moritz ; Nguyen, Ariana E ; Martinez-Ta, Dominic ; Naghibi Alvillar, Sahar ; Bartels, Ludwig ; Krenner, Hubert J</creator><creatorcontrib>Hammer, Sebastian ; Mangold, H Moritz ; Nguyen, Ariana E ; Martinez-Ta, Dominic ; Naghibi Alvillar, Sahar ; Bartels, Ludwig ; Krenner, Hubert J</creatorcontrib><description>We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS ) - silicon dioxide (SiO ) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer; it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for on-chip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration; our findings suggest feasibility of cavity based line-narrowing in MoS -based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-07379-2</identifier><identifier>PMID: 28775371</identifier><language>eng</language><publisher>England</publisher><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7251</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0696-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28775371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammer, Sebastian</creatorcontrib><creatorcontrib>Mangold, H Moritz</creatorcontrib><creatorcontrib>Nguyen, Ariana E</creatorcontrib><creatorcontrib>Martinez-Ta, Dominic</creatorcontrib><creatorcontrib>Naghibi Alvillar, Sahar</creatorcontrib><creatorcontrib>Bartels, Ludwig</creatorcontrib><creatorcontrib>Krenner, Hubert J</creatorcontrib><title>Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS ) - silicon dioxide (SiO ) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer; it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for on-chip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration; our findings suggest feasibility of cavity based line-narrowing in MoS -based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFjstqwzAUREWhNKHND3RR7g-o0cNG9jKEmGzaUpx9uJblRsWRjKQ8DP34utCuO5sDM7M4hDxy9syZLJYx43lZUMYVZUqqkoobMhcsy6mQQszIIsZPNiUXZcbLOzIThVK5VHxOvmqNPTa9AXQt7AK62JlAq2AMVNgEqzFZ78B38OJrELCs7duE7ThtLbyi88PBJ--shjWebRphFQKOES42HeD9hP1PV6FOPkTYXLUxrXUfkE0-D-S2wz6axS_vyVO12a23dDg1R9Puh2CPGMb9n6789_ANZPhQEw</recordid><startdate>20170803</startdate><enddate>20170803</enddate><creator>Hammer, Sebastian</creator><creator>Mangold, H Moritz</creator><creator>Nguyen, Ariana E</creator><creator>Martinez-Ta, Dominic</creator><creator>Naghibi Alvillar, Sahar</creator><creator>Bartels, Ludwig</creator><creator>Krenner, Hubert J</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-0696-456X</orcidid></search><sort><creationdate>20170803</creationdate><title>Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000</title><author>Hammer, Sebastian ; Mangold, H Moritz ; Nguyen, Ariana E ; Martinez-Ta, Dominic ; Naghibi Alvillar, Sahar ; Bartels, Ludwig ; Krenner, Hubert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_287753713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammer, Sebastian</creatorcontrib><creatorcontrib>Mangold, H Moritz</creatorcontrib><creatorcontrib>Nguyen, Ariana E</creatorcontrib><creatorcontrib>Martinez-Ta, Dominic</creatorcontrib><creatorcontrib>Naghibi Alvillar, Sahar</creatorcontrib><creatorcontrib>Bartels, Ludwig</creatorcontrib><creatorcontrib>Krenner, Hubert J</creatorcontrib><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammer, Sebastian</au><au>Mangold, H Moritz</au><au>Nguyen, Ariana E</au><au>Martinez-Ta, Dominic</au><au>Naghibi Alvillar, Sahar</au><au>Bartels, Ludwig</au><au>Krenner, Hubert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2017-08-03</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7251</spage><pages>7251-</pages><eissn>2045-2322</eissn><abstract>We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS ) - silicon dioxide (SiO ) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer; it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for on-chip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration; our findings suggest feasibility of cavity based line-narrowing in MoS -based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing.</abstract><cop>England</cop><pmid>28775371</pmid><doi>10.1038/s41598-017-07379-2</doi><orcidid>https://orcid.org/0000-0002-0696-456X</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.7251
issn 2045-2322
language eng
recordid cdi_pubmed_primary_28775371
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
title Scalable and Transfer-Free Fabrication of MoS 2 /SiO 2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20Transfer-Free%20Fabrication%20of%20MoS%202%20/SiO%202%20Hybrid%20Nanophotonic%20Cavity%20Arrays%20with%20Quality%20Factors%20Exceeding%204000&rft.jtitle=Scientific%20reports&rft.au=Hammer,%20Sebastian&rft.date=2017-08-03&rft.volume=7&rft.issue=1&rft.spage=7251&rft.pages=7251-&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-07379-2&rft_dat=%3Cpubmed%3E28775371%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28775371&rfr_iscdi=true