Understanding iridium oxide nanoparticle surface sites by their interaction with catechol

Iridium oxide (IrO x ) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (24), p.16151-16158
Hauptverfasser: Finkelstein-Shapiro, Daniel, Fournier, Maxime, Méndez-Hernández, Dalvin D, Guo, Chengchen, Calatayud, Monica, Moore, Thomas A, Moore, Ana L, Gust, Devens, Yarger, Jeffery L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16158
container_issue 24
container_start_page 16151
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Finkelstein-Shapiro, Daniel
Fournier, Maxime
Méndez-Hernández, Dalvin D
Guo, Chengchen
Calatayud, Monica
Moore, Thomas A
Moore, Ana L
Gust, Devens
Yarger, Jeffery L
description Iridium oxide (IrO x ) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrO x nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrO x nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity. We report the first method to quantitatively understand the optical and catalytic properties of IrO x nanoparticles.
doi_str_mv 10.1039/c7cp01516j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28604860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908797102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-f12420e7b0cefbb21d5b4a5662ad8e5af3281af66fdedea8877a7da544229ee73</originalsourceid><addsrcrecordid>eNqN0s1vFCEUAHBiNLZWL941oydrssrXwMyx2ai12UQP9uCJMPBwaWZhCoza_76s064344E8wvvlPcIDoecEvyOY9e-NNBMmLRFXD9Ax4YKtetzxh4e9FEfoSc5XGO8Ve4yOaCcwr-sYfb8MFlIuOlgffjQ-eevnXRN_ewtN0CFOOhVvRmjynJw2NfoCuRlumrIFnxofCiRtio-h-eXLtjG6gNnG8Sl65PSY4dldPEGXHz98W5-vNl8-fV6fbVaGC1FWjlBOMcgBG3DDQIltB65bIai2HbTaMdoR7YRwFizorpNSS6tbzintASQ7Qa-XujEXr7Lx-_YmhgCmKNKylvSsotMFbfWopuR3Ot2oqL06P9uo_Rnm9SU55j9JtW8WO6V4PUMuauezgXHUAeKcFelp28meMPwfFFcpCaaVvl2oSTHnBO5wDYLVfoxqLddf_4zxouKXd3XnYQf2QO_nVsGLBaRsDtm__6DmX_0rrybr2C0J760b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908797102</pqid></control><display><type>article</type><title>Understanding iridium oxide nanoparticle surface sites by their interaction with catechol</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Finkelstein-Shapiro, Daniel ; Fournier, Maxime ; Méndez-Hernández, Dalvin D ; Guo, Chengchen ; Calatayud, Monica ; Moore, Thomas A ; Moore, Ana L ; Gust, Devens ; Yarger, Jeffery L</creator><creatorcontrib>Finkelstein-Shapiro, Daniel ; Fournier, Maxime ; Méndez-Hernández, Dalvin D ; Guo, Chengchen ; Calatayud, Monica ; Moore, Thomas A ; Moore, Ana L ; Gust, Devens ; Yarger, Jeffery L ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>Iridium oxide (IrO x ) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrO x nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrO x nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity. We report the first method to quantitatively understand the optical and catalytic properties of IrO x nanoparticles.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp01516j</identifier><identifier>PMID: 28604860</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Architecture ; Catalysis ; Catalysts ; Catechol ; Chemical Sciences ; Chemistry ; Ligands ; Nanoparticles ; Nanostructure ; Physics ; Surface chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017, Vol.19 (24), p.16151-16158</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-f12420e7b0cefbb21d5b4a5662ad8e5af3281af66fdedea8877a7da544229ee73</citedby><cites>FETCH-LOGICAL-c466t-f12420e7b0cefbb21d5b4a5662ad8e5af3281af66fdedea8877a7da544229ee73</cites><orcidid>0000-0001-5659-415X ; 0000-0001-9253-3469 ; 0000-0001-8015-5376 ; 0000-0003-0555-8938 ; 0000000305558938 ; 0000000192533469 ; 000000015659415X ; 0000000180155376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28604860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04039404$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1535193$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkelstein-Shapiro, Daniel</creatorcontrib><creatorcontrib>Fournier, Maxime</creatorcontrib><creatorcontrib>Méndez-Hernández, Dalvin D</creatorcontrib><creatorcontrib>Guo, Chengchen</creatorcontrib><creatorcontrib>Calatayud, Monica</creatorcontrib><creatorcontrib>Moore, Thomas A</creatorcontrib><creatorcontrib>Moore, Ana L</creatorcontrib><creatorcontrib>Gust, Devens</creatorcontrib><creatorcontrib>Yarger, Jeffery L</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Understanding iridium oxide nanoparticle surface sites by their interaction with catechol</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Iridium oxide (IrO x ) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrO x nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrO x nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity. We report the first method to quantitatively understand the optical and catalytic properties of IrO x nanoparticles.</description><subject>Architecture</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catechol</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Ligands</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Surface chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0s1vFCEUAHBiNLZWL941oydrssrXwMyx2ai12UQP9uCJMPBwaWZhCoza_76s064344E8wvvlPcIDoecEvyOY9e-NNBMmLRFXD9Ax4YKtetzxh4e9FEfoSc5XGO8Ve4yOaCcwr-sYfb8MFlIuOlgffjQ-eevnXRN_ewtN0CFOOhVvRmjynJw2NfoCuRlumrIFnxofCiRtio-h-eXLtjG6gNnG8Sl65PSY4dldPEGXHz98W5-vNl8-fV6fbVaGC1FWjlBOMcgBG3DDQIltB65bIai2HbTaMdoR7YRwFizorpNSS6tbzintASQ7Qa-XujEXr7Lx-_YmhgCmKNKylvSsotMFbfWopuR3Ot2oqL06P9uo_Rnm9SU55j9JtW8WO6V4PUMuauezgXHUAeKcFelp28meMPwfFFcpCaaVvl2oSTHnBO5wDYLVfoxqLddf_4zxouKXd3XnYQf2QO_nVsGLBaRsDtm__6DmX_0rrybr2C0J760b</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Finkelstein-Shapiro, Daniel</creator><creator>Fournier, Maxime</creator><creator>Méndez-Hernández, Dalvin D</creator><creator>Guo, Chengchen</creator><creator>Calatayud, Monica</creator><creator>Moore, Thomas A</creator><creator>Moore, Ana L</creator><creator>Gust, Devens</creator><creator>Yarger, Jeffery L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5659-415X</orcidid><orcidid>https://orcid.org/0000-0001-9253-3469</orcidid><orcidid>https://orcid.org/0000-0001-8015-5376</orcidid><orcidid>https://orcid.org/0000-0003-0555-8938</orcidid><orcidid>https://orcid.org/0000000305558938</orcidid><orcidid>https://orcid.org/0000000192533469</orcidid><orcidid>https://orcid.org/000000015659415X</orcidid><orcidid>https://orcid.org/0000000180155376</orcidid></search><sort><creationdate>2017</creationdate><title>Understanding iridium oxide nanoparticle surface sites by their interaction with catechol</title><author>Finkelstein-Shapiro, Daniel ; Fournier, Maxime ; Méndez-Hernández, Dalvin D ; Guo, Chengchen ; Calatayud, Monica ; Moore, Thomas A ; Moore, Ana L ; Gust, Devens ; Yarger, Jeffery L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-f12420e7b0cefbb21d5b4a5662ad8e5af3281af66fdedea8877a7da544229ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Architecture</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catechol</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Ligands</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkelstein-Shapiro, Daniel</creatorcontrib><creatorcontrib>Fournier, Maxime</creatorcontrib><creatorcontrib>Méndez-Hernández, Dalvin D</creatorcontrib><creatorcontrib>Guo, Chengchen</creatorcontrib><creatorcontrib>Calatayud, Monica</creatorcontrib><creatorcontrib>Moore, Thomas A</creatorcontrib><creatorcontrib>Moore, Ana L</creatorcontrib><creatorcontrib>Gust, Devens</creatorcontrib><creatorcontrib>Yarger, Jeffery L</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkelstein-Shapiro, Daniel</au><au>Fournier, Maxime</au><au>Méndez-Hernández, Dalvin D</au><au>Guo, Chengchen</au><au>Calatayud, Monica</au><au>Moore, Thomas A</au><au>Moore, Ana L</au><au>Gust, Devens</au><au>Yarger, Jeffery L</au><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding iridium oxide nanoparticle surface sites by their interaction with catechol</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>24</issue><spage>16151</spage><epage>16158</epage><pages>16151-16158</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Iridium oxide (IrO x ) is one of the best water splitting electrocatalysts, but its active site details are not well known. As with all heterogeneous catalysts, a strategy for counting the number of active sites is not clear, and understanding their nature and structure is remarkably difficult. In this work, we performed a combined study using optical spectroscopy, magnetic resonance and electrochemistry to characterize the interaction of IrO x nanoparticles (NPs) with a probe molecule, catechol. The catalyst is heterogeneous given that the substrate is in a different phase, but behaves as a homogeneous catalyst from the point of view of electrochemistry since it remains in colloidal suspension. We find two types of binding sites: centers A which bind catechol irreversibly making up 21% of the surface, and centers B which bind catechol reversibly making up 79% of the surface. UV-vis absorption spectroscopy shows that the A sites are responsible for the characteristic blue color of the NPs. Electrochemical experiments indicate that the B sites are catalytically active and we give the number of active sites per nanoparticle. We conclude by performing a survey of ligands used in solar cell architectures and show which ones bind well to the surface and which ones inhibit the catalytic activity when doing so, presenting quantitative guidelines for the correct handling of IrO x nanoparticles during their incorporation into multifunctional solar energy harvesting architectures. We suggest ligands binding on the surface oxygen atoms allow for large bound ligand densities with no detrimental effect on the catalytic activity. We report the first method to quantitatively understand the optical and catalytic properties of IrO x nanoparticles.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>28604860</pmid><doi>10.1039/c7cp01516j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5659-415X</orcidid><orcidid>https://orcid.org/0000-0001-9253-3469</orcidid><orcidid>https://orcid.org/0000-0001-8015-5376</orcidid><orcidid>https://orcid.org/0000-0003-0555-8938</orcidid><orcidid>https://orcid.org/0000000305558938</orcidid><orcidid>https://orcid.org/0000000192533469</orcidid><orcidid>https://orcid.org/000000015659415X</orcidid><orcidid>https://orcid.org/0000000180155376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017, Vol.19 (24), p.16151-16158
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_28604860
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Architecture
Catalysis
Catalysts
Catechol
Chemical Sciences
Chemistry
Ligands
Nanoparticles
Nanostructure
Physics
Surface chemistry
title Understanding iridium oxide nanoparticle surface sites by their interaction with catechol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20iridium%20oxide%20nanoparticle%20surface%20sites%20by%20their%20interaction%20with%20catechol&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Finkelstein-Shapiro,%20Daniel&rft.aucorp=Arizona%20State%20Univ.,%20Tempe,%20AZ%20(United%20States)&rft.date=2017&rft.volume=19&rft.issue=24&rft.spage=16151&rft.epage=16158&rft.pages=16151-16158&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp01516j&rft_dat=%3Cproquest_pubme%3E1908797102%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908797102&rft_id=info:pmid/28604860&rfr_iscdi=true