Calculation of Hamilton energy and control of dynamical systems with different types of attractors

Strange attractors can be observed in chaotic and hyperchaotic systems. Most of the dynamical systems hold a finite number of attractors, while some chaotic systems can be controlled to present an infinite number of attractors by generating infinite equilibria. Chaos can also be triggered in some dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2017-05, Vol.27 (5), p.053108-053108
Hauptverfasser: Ma, Jun, Wu, Fuqiang, Jin, Wuyin, Zhou, Ping, Hayat, Tasawar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 053108
container_issue 5
container_start_page 053108
container_title Chaos (Woodbury, N.Y.)
container_volume 27
creator Ma, Jun
Wu, Fuqiang
Jin, Wuyin
Zhou, Ping
Hayat, Tasawar
description Strange attractors can be observed in chaotic and hyperchaotic systems. Most of the dynamical systems hold a finite number of attractors, while some chaotic systems can be controlled to present an infinite number of attractors by generating infinite equilibria. Chaos can also be triggered in some dynamical systems that can present hidden attractors, and the attractors in these dynamical systems find no equilibria and the basin of attraction is not connected with any equilibrium (the equilibria position meets certain restriction function). In this paper, Hamilton energy is calculated on the chaotic systems with different types of attractors, and energy modulation is used to control the chaos in these systems. The potential mechanism could be that negative feedback in energy can suppress the phase space and oscillating behaviors, and thus, the chaotic, periodical oscillators can be controlled. It could be effective to control other chaotic, hyperchaotic and even periodical oscillating systems as well.
doi_str_mv 10.1063/1.4983469
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28576108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905739219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2844180ecebcc9024da523b51036363e9d9f945ea4b7a6c7ca6f9e5afd270ccb3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiveFLyAFNypUc22bpQzeQHCj65CmJ1ppmzFJlb69GWdUUJAsciAffw4_QgcEnxFcsHNyxmXFeCHX0DbBlczLoqLri1nwnAiMt9BOCC8YY0KZ2ERbtBJlkeQ2qme6M2OnY-uGzNnsRvdtF9MMA_inKdNDkxk3RO-6xXMzDQkY3WVhChH6kL238TlrWmvBwxCzOM0hLKSO0WsTnQ97aMPqLsD-6t5Fj1eXD7Ob_O7--nZ2cZcbVrGY04pzUmEwUBsjMeWNFpTVgmBWpAOykVZyAZrXpS5MaXRhJQhtG1piY2q2i46XuXPvXkcIUfVtMNB1egA3BkUkFiWTlMhEj37RFzf6IW2nKKGcS1mQKqmTpTLeheDBqrlve-0nRbBaFK-IWhWf7OEqcax7aL7lV9MJnC5BMG38rPvbvDn_k6Tmjf0P__36A33Mmk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124499618</pqid></control><display><type>article</type><title>Calculation of Hamilton energy and control of dynamical systems with different types of attractors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ma, Jun ; Wu, Fuqiang ; Jin, Wuyin ; Zhou, Ping ; Hayat, Tasawar</creator><creatorcontrib>Ma, Jun ; Wu, Fuqiang ; Jin, Wuyin ; Zhou, Ping ; Hayat, Tasawar</creatorcontrib><description>Strange attractors can be observed in chaotic and hyperchaotic systems. Most of the dynamical systems hold a finite number of attractors, while some chaotic systems can be controlled to present an infinite number of attractors by generating infinite equilibria. Chaos can also be triggered in some dynamical systems that can present hidden attractors, and the attractors in these dynamical systems find no equilibria and the basin of attraction is not connected with any equilibrium (the equilibria position meets certain restriction function). In this paper, Hamilton energy is calculated on the chaotic systems with different types of attractors, and energy modulation is used to control the chaos in these systems. The potential mechanism could be that negative feedback in energy can suppress the phase space and oscillating behaviors, and thus, the chaotic, periodical oscillators can be controlled. It could be effective to control other chaotic, hyperchaotic and even periodical oscillating systems as well.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4983469</identifier><identifier>PMID: 28576108</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Attractors (mathematics) ; Chaos theory ; Control systems ; Dynamical systems ; Economic models ; Equilibrium ; Mathematical analysis ; Negative feedback ; Oscillators ; Strange attractors ; System effectiveness</subject><ispartof>Chaos (Woodbury, N.Y.), 2017-05, Vol.27 (5), p.053108-053108</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2844180ecebcc9024da523b51036363e9d9f945ea4b7a6c7ca6f9e5afd270ccb3</citedby><cites>FETCH-LOGICAL-c383t-2844180ecebcc9024da523b51036363e9d9f945ea4b7a6c7ca6f9e5afd270ccb3</cites><orcidid>0000-0002-6127-000X ; 000000026127000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28576108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wu, Fuqiang</creatorcontrib><creatorcontrib>Jin, Wuyin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Hayat, Tasawar</creatorcontrib><title>Calculation of Hamilton energy and control of dynamical systems with different types of attractors</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Strange attractors can be observed in chaotic and hyperchaotic systems. Most of the dynamical systems hold a finite number of attractors, while some chaotic systems can be controlled to present an infinite number of attractors by generating infinite equilibria. Chaos can also be triggered in some dynamical systems that can present hidden attractors, and the attractors in these dynamical systems find no equilibria and the basin of attraction is not connected with any equilibrium (the equilibria position meets certain restriction function). In this paper, Hamilton energy is calculated on the chaotic systems with different types of attractors, and energy modulation is used to control the chaos in these systems. The potential mechanism could be that negative feedback in energy can suppress the phase space and oscillating behaviors, and thus, the chaotic, periodical oscillators can be controlled. It could be effective to control other chaotic, hyperchaotic and even periodical oscillating systems as well.</description><subject>Attractors (mathematics)</subject><subject>Chaos theory</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Economic models</subject><subject>Equilibrium</subject><subject>Mathematical analysis</subject><subject>Negative feedback</subject><subject>Oscillators</subject><subject>Strange attractors</subject><subject>System effectiveness</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgiveFLyAFNypUc22bpQzeQHCj65CmJ1ppmzFJlb69GWdUUJAsciAffw4_QgcEnxFcsHNyxmXFeCHX0DbBlczLoqLri1nwnAiMt9BOCC8YY0KZ2ERbtBJlkeQ2qme6M2OnY-uGzNnsRvdtF9MMA_inKdNDkxk3RO-6xXMzDQkY3WVhChH6kL238TlrWmvBwxCzOM0hLKSO0WsTnQ97aMPqLsD-6t5Fj1eXD7Ob_O7--nZ2cZcbVrGY04pzUmEwUBsjMeWNFpTVgmBWpAOykVZyAZrXpS5MaXRhJQhtG1piY2q2i46XuXPvXkcIUfVtMNB1egA3BkUkFiWTlMhEj37RFzf6IW2nKKGcS1mQKqmTpTLeheDBqrlve-0nRbBaFK-IWhWf7OEqcax7aL7lV9MJnC5BMG38rPvbvDn_k6Tmjf0P__36A33Mmk0</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Ma, Jun</creator><creator>Wu, Fuqiang</creator><creator>Jin, Wuyin</creator><creator>Zhou, Ping</creator><creator>Hayat, Tasawar</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6127-000X</orcidid><orcidid>https://orcid.org/000000026127000X</orcidid></search><sort><creationdate>201705</creationdate><title>Calculation of Hamilton energy and control of dynamical systems with different types of attractors</title><author>Ma, Jun ; Wu, Fuqiang ; Jin, Wuyin ; Zhou, Ping ; Hayat, Tasawar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2844180ecebcc9024da523b51036363e9d9f945ea4b7a6c7ca6f9e5afd270ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attractors (mathematics)</topic><topic>Chaos theory</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Economic models</topic><topic>Equilibrium</topic><topic>Mathematical analysis</topic><topic>Negative feedback</topic><topic>Oscillators</topic><topic>Strange attractors</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Wu, Fuqiang</creatorcontrib><creatorcontrib>Jin, Wuyin</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Hayat, Tasawar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jun</au><au>Wu, Fuqiang</au><au>Jin, Wuyin</au><au>Zhou, Ping</au><au>Hayat, Tasawar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Hamilton energy and control of dynamical systems with different types of attractors</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2017-05</date><risdate>2017</risdate><volume>27</volume><issue>5</issue><spage>053108</spage><epage>053108</epage><pages>053108-053108</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Strange attractors can be observed in chaotic and hyperchaotic systems. Most of the dynamical systems hold a finite number of attractors, while some chaotic systems can be controlled to present an infinite number of attractors by generating infinite equilibria. Chaos can also be triggered in some dynamical systems that can present hidden attractors, and the attractors in these dynamical systems find no equilibria and the basin of attraction is not connected with any equilibrium (the equilibria position meets certain restriction function). In this paper, Hamilton energy is calculated on the chaotic systems with different types of attractors, and energy modulation is used to control the chaos in these systems. The potential mechanism could be that negative feedback in energy can suppress the phase space and oscillating behaviors, and thus, the chaotic, periodical oscillators can be controlled. It could be effective to control other chaotic, hyperchaotic and even periodical oscillating systems as well.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28576108</pmid><doi>10.1063/1.4983469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6127-000X</orcidid><orcidid>https://orcid.org/000000026127000X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2017-05, Vol.27 (5), p.053108-053108
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_28576108
source AIP Journals Complete; Alma/SFX Local Collection
subjects Attractors (mathematics)
Chaos theory
Control systems
Dynamical systems
Economic models
Equilibrium
Mathematical analysis
Negative feedback
Oscillators
Strange attractors
System effectiveness
title Calculation of Hamilton energy and control of dynamical systems with different types of attractors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Hamilton%20energy%20and%20control%20of%20dynamical%20systems%20with%20different%20types%20of%20attractors&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Ma,%20Jun&rft.date=2017-05&rft.volume=27&rft.issue=5&rft.spage=053108&rft.epage=053108&rft.pages=053108-053108&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4983469&rft_dat=%3Cproquest_pubme%3E1905739219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124499618&rft_id=info:pmid/28576108&rfr_iscdi=true