The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections

Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2018-08, Vol.24 (8), p.2424-2439
Hauptverfasser: Lehmann, Dirk Joachim, Theisel, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2439
container_issue 8
container_start_page 2424
container_title IEEE transactions on visualization and computer graphics
container_volume 24
creator Lehmann, Dirk Joachim
Theisel, Holger
description Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.
doi_str_mv 10.1109/TVCG.2017.2705189
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28534778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7930525</ieee_id><sourcerecordid>2063043245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVIyFf7A0KhCHrJxVt9WlJuy5KmhQ0N6TZXIcvjRIvX2kp2afLra7ObHHKaYeaZ4eVB6IKSGaXEfF09LG5mjFA1Y4pIqs0BOqVG0IJIUh6OPVGqYCUrT9BZzmtCqBDaHKMTpiUXSulT9LB6Arxs43N9D637B-kKzzs8325TdP4J9xHfhi5swgvgX961oXvE100Dvs-4iQnfDm0f_roUXA_4LsX1uAmxyx_QUePaDB_39Rz9_na9Wnwvlj9vfizmy8JzYfrCN14yynzlNJclE5X0ShkpPHGuApCc1b7hDS21U8ZL4WrNFJQwDapaE36OLnd_x7x_Bsi93YTsoW1dB3HIlprRTkk0m9Av79B1HFI3prOMlJwIzoQcKbqjfIo5J2jsNoWNS8-WEjtJt5N0O0m3e-njzef956HaQP128Wp5BD7tgAAAb2tlOJFM8v9SEIU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063043245</pqid></control><display><type>article</type><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><source>IEEE Electronic Library (IEL)</source><creator>Lehmann, Dirk Joachim ; Theisel, Holger</creator><creatorcontrib>Lehmann, Dirk Joachim ; Theisel, Holger</creatorcontrib><description>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2705189</identifier><identifier>PMID: 28534778</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computational geometry ; Data analysis ; Data visualization ; Information visualization ; Multidimensional data ; Online analytical processing ; Optimization ; Projection ; projections ; Scaling ; star coordinates ; Temperature measurement ; Two dimensional displays ; Voronoi graphs</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2424-2439</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</citedby><cites>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</cites><orcidid>0000-0002-8089-4408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7930525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7930525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28534778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, Dirk Joachim</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</description><subject>Computational geometry</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Information visualization</subject><subject>Multidimensional data</subject><subject>Online analytical processing</subject><subject>Optimization</subject><subject>Projection</subject><subject>projections</subject><subject>Scaling</subject><subject>star coordinates</subject><subject>Temperature measurement</subject><subject>Two dimensional displays</subject><subject>Voronoi graphs</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r3DAQhkVIyFf7A0KhCHrJxVt9WlJuy5KmhQ0N6TZXIcvjRIvX2kp2afLra7ObHHKaYeaZ4eVB6IKSGaXEfF09LG5mjFA1Y4pIqs0BOqVG0IJIUh6OPVGqYCUrT9BZzmtCqBDaHKMTpiUXSulT9LB6Arxs43N9D637B-kKzzs8325TdP4J9xHfhi5swgvgX961oXvE100Dvs-4iQnfDm0f_roUXA_4LsX1uAmxyx_QUePaDB_39Rz9_na9Wnwvlj9vfizmy8JzYfrCN14yynzlNJclE5X0ShkpPHGuApCc1b7hDS21U8ZL4WrNFJQwDapaE36OLnd_x7x_Bsi93YTsoW1dB3HIlprRTkk0m9Av79B1HFI3prOMlJwIzoQcKbqjfIo5J2jsNoWNS8-WEjtJt5N0O0m3e-njzef956HaQP128Wp5BD7tgAAAb2tlOJFM8v9SEIU3</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lehmann, Dirk Joachim</creator><creator>Theisel, Holger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8089-4408</orcidid></search><sort><creationdate>20180801</creationdate><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><author>Lehmann, Dirk Joachim ; Theisel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational geometry</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Information visualization</topic><topic>Multidimensional data</topic><topic>Online analytical processing</topic><topic>Optimization</topic><topic>Projection</topic><topic>projections</topic><topic>Scaling</topic><topic>star coordinates</topic><topic>Temperature measurement</topic><topic>Two dimensional displays</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Dirk Joachim</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lehmann, Dirk Joachim</au><au>Theisel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>2424</spage><epage>2439</epage><pages>2424-2439</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28534778</pmid><doi>10.1109/TVCG.2017.2705189</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8089-4408</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2424-2439
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_28534778
source IEEE Electronic Library (IEL)
subjects Computational geometry
Data analysis
Data visualization
Information visualization
Multidimensional data
Online analytical processing
Optimization
Projection
projections
Scaling
star coordinates
Temperature measurement
Two dimensional displays
Voronoi graphs
title The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LloydRelaxer:%20An%20Approach%20to%20Minimize%20Scaling%20Effects%20for%20Multivariate%20Projections&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lehmann,%20Dirk%20Joachim&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=2424&rft.epage=2439&rft.pages=2424-2439&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2705189&rft_dat=%3Cproquest_RIE%3E2063043245%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063043245&rft_id=info:pmid/28534778&rft_ieee_id=7930525&rfr_iscdi=true