The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections
Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-base...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2018-08, Vol.24 (8), p.2424-2439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2439 |
---|---|
container_issue | 8 |
container_start_page | 2424 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 24 |
creator | Lehmann, Dirk Joachim Theisel, Holger |
description | Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository. |
doi_str_mv | 10.1109/TVCG.2017.2705189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28534778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7930525</ieee_id><sourcerecordid>2063043245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVIyFf7A0KhCHrJxVt9WlJuy5KmhQ0N6TZXIcvjRIvX2kp2afLra7ObHHKaYeaZ4eVB6IKSGaXEfF09LG5mjFA1Y4pIqs0BOqVG0IJIUh6OPVGqYCUrT9BZzmtCqBDaHKMTpiUXSulT9LB6Arxs43N9D637B-kKzzs8325TdP4J9xHfhi5swgvgX961oXvE100Dvs-4iQnfDm0f_roUXA_4LsX1uAmxyx_QUePaDB_39Rz9_na9Wnwvlj9vfizmy8JzYfrCN14yynzlNJclE5X0ShkpPHGuApCc1b7hDS21U8ZL4WrNFJQwDapaE36OLnd_x7x_Bsi93YTsoW1dB3HIlprRTkk0m9Av79B1HFI3prOMlJwIzoQcKbqjfIo5J2jsNoWNS8-WEjtJt5N0O0m3e-njzef956HaQP128Wp5BD7tgAAAb2tlOJFM8v9SEIU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063043245</pqid></control><display><type>article</type><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><source>IEEE Electronic Library (IEL)</source><creator>Lehmann, Dirk Joachim ; Theisel, Holger</creator><creatorcontrib>Lehmann, Dirk Joachim ; Theisel, Holger</creatorcontrib><description>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2705189</identifier><identifier>PMID: 28534778</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computational geometry ; Data analysis ; Data visualization ; Information visualization ; Multidimensional data ; Online analytical processing ; Optimization ; Projection ; projections ; Scaling ; star coordinates ; Temperature measurement ; Two dimensional displays ; Voronoi graphs</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2424-2439</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</citedby><cites>FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</cites><orcidid>0000-0002-8089-4408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7930525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7930525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28534778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, Dirk Joachim</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</description><subject>Computational geometry</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Information visualization</subject><subject>Multidimensional data</subject><subject>Online analytical processing</subject><subject>Optimization</subject><subject>Projection</subject><subject>projections</subject><subject>Scaling</subject><subject>star coordinates</subject><subject>Temperature measurement</subject><subject>Two dimensional displays</subject><subject>Voronoi graphs</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r3DAQhkVIyFf7A0KhCHrJxVt9WlJuy5KmhQ0N6TZXIcvjRIvX2kp2afLra7ObHHKaYeaZ4eVB6IKSGaXEfF09LG5mjFA1Y4pIqs0BOqVG0IJIUh6OPVGqYCUrT9BZzmtCqBDaHKMTpiUXSulT9LB6Arxs43N9D637B-kKzzs8325TdP4J9xHfhi5swgvgX961oXvE100Dvs-4iQnfDm0f_roUXA_4LsX1uAmxyx_QUePaDB_39Rz9_na9Wnwvlj9vfizmy8JzYfrCN14yynzlNJclE5X0ShkpPHGuApCc1b7hDS21U8ZL4WrNFJQwDapaE36OLnd_x7x_Bsi93YTsoW1dB3HIlprRTkk0m9Av79B1HFI3prOMlJwIzoQcKbqjfIo5J2jsNoWNS8-WEjtJt5N0O0m3e-njzef956HaQP128Wp5BD7tgAAAb2tlOJFM8v9SEIU3</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lehmann, Dirk Joachim</creator><creator>Theisel, Holger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8089-4408</orcidid></search><sort><creationdate>20180801</creationdate><title>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</title><author>Lehmann, Dirk Joachim ; Theisel, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cfc5212cba835624b5c77954c0aabee532dcf3f168a79c54ad827e6e168abd803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational geometry</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Information visualization</topic><topic>Multidimensional data</topic><topic>Online analytical processing</topic><topic>Optimization</topic><topic>Projection</topic><topic>projections</topic><topic>Scaling</topic><topic>star coordinates</topic><topic>Temperature measurement</topic><topic>Two dimensional displays</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Dirk Joachim</creatorcontrib><creatorcontrib>Theisel, Holger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lehmann, Dirk Joachim</au><au>Theisel, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>2424</spage><epage>2439</epage><pages>2424-2439</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28534778</pmid><doi>10.1109/TVCG.2017.2705189</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8089-4408</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2424-2439 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_28534778 |
source | IEEE Electronic Library (IEL) |
subjects | Computational geometry Data analysis Data visualization Information visualization Multidimensional data Online analytical processing Optimization Projection projections Scaling star coordinates Temperature measurement Two dimensional displays Voronoi graphs |
title | The LloydRelaxer: An Approach to Minimize Scaling Effects for Multivariate Projections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LloydRelaxer:%20An%20Approach%20to%20Minimize%20Scaling%20Effects%20for%20Multivariate%20Projections&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lehmann,%20Dirk%20Joachim&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=2424&rft.epage=2439&rft.pages=2424-2439&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2705189&rft_dat=%3Cproquest_RIE%3E2063043245%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063043245&rft_id=info:pmid/28534778&rft_ieee_id=7930525&rfr_iscdi=true |