Green synthesis of highly stable carbon nanodots and their photocatalytic performance
The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet–visible (UV–vis) spectros...
Gespeichert in:
Veröffentlicht in: | IET nanobiotechnology 2017-06, Vol.11 (4), p.360-364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 4 |
container_start_page | 360 |
container_title | IET nanobiotechnology |
container_volume | 11 |
creator | Mahajan, Rashmi Bhadwal, Akhshay Singh Kumar, Nishant Madhusudanan, Mukil Pudake, Ramesh Namdeo Tripathi, Ravi Mani |
description | The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet–visible (UV–vis) spectroscopy, Dynamic light scattering, photoluminescence spectroscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The as-prepared CDs possess an eminent fluorescence under UV–light (λex = 365 nm). The size range of CDs was found to be in the range of 5–10 nm. The authors further explored the use of such biosynthesised CDs as a photocatalyst material for removal of industrial dye. Degradation of methylene blue dye was performed in a photocatalytic reactor and monitored using UV–vis spectroscopy. The CDs show excellent dye degradation capability of 37.08% in 60 min and reaction rate of 0.0032 min−1. This study shows that synthesised CDs are highly stable in nature, and possess potential application in wastewater treatment. |
doi_str_mv | 10.1049/iet-nbt.2016.0025 |
format | Article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_pubmed_primary_28530182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NBT2BF00236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5226-2eab7b1526fef00153f37a64e339f075c316cced1c0150c52b379a51ea872263</originalsourceid><addsrcrecordid>eNqFkE9r2zAYh8XYWNNuH2CXousOTvUnsp0eBmtJ2kJYLxnsJmT5Va3iSEZSW_ztK5M2dFC2k17Q7_m90oPQN0rmlCyWZxZS4Zo0Z4SWc0KY-IBmtBK0qCvx5-NhXtAjdBzjPSFCCF5_RkesFpzQms3Q76sA4HAcXeog2oi9wZ296_oRx6SaHrBWofEOO-V861PEyrU4Z23AQ-eT1yqpfkxW4wGC8WGnnIYv6JNRfYSvL-cJ2q5X28vrYnN7dXP5c1NowVhZMFBN1VDBSgOGECq44ZUqF8D50pBKaE5LraGlOt-RzDS8WipBQdVV5vkJ-rGvHR6aHbQaXAqql0OwOxVG6ZWVf98428k7_yjrsirpUuQCui_QwccYwBxYSuSkWGbFMiuWk2I5Kc7M6dulB-LVaQ6c7wNPtofx_43y18WWXazzyKcvFXt4it37h-Cyv3--5vs7-ZvVdmp9s2NoDX8G8VGp4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green synthesis of highly stable carbon nanodots and their photocatalytic performance</title><source>Wiley Online Library Open Access</source><creator>Mahajan, Rashmi ; Bhadwal, Akhshay Singh ; Kumar, Nishant ; Madhusudanan, Mukil ; Pudake, Ramesh Namdeo ; Tripathi, Ravi Mani</creator><creatorcontrib>Mahajan, Rashmi ; Bhadwal, Akhshay Singh ; Kumar, Nishant ; Madhusudanan, Mukil ; Pudake, Ramesh Namdeo ; Tripathi, Ravi Mani</creatorcontrib><description>The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet–visible (UV–vis) spectroscopy, Dynamic light scattering, photoluminescence spectroscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The as-prepared CDs possess an eminent fluorescence under UV–light (λex = 365 nm). The size range of CDs was found to be in the range of 5–10 nm. The authors further explored the use of such biosynthesised CDs as a photocatalyst material for removal of industrial dye. Degradation of methylene blue dye was performed in a photocatalytic reactor and monitored using UV–vis spectroscopy. The CDs show excellent dye degradation capability of 37.08% in 60 min and reaction rate of 0.0032 min−1. This study shows that synthesised CDs are highly stable in nature, and possess potential application in wastewater treatment.</description><identifier>ISSN: 1751-8741</identifier><identifier>ISSN: 1751-875X</identifier><identifier>EISSN: 1751-875X</identifier><identifier>DOI: 10.1049/iet-nbt.2016.0025</identifier><identifier>PMID: 28530182</identifier><language>eng</language><publisher>United States: The Institution of Engineering and Technology</publisher><subject>biosynthesis route ; biosynthesised CD ; carbon ; Carbon - chemistry ; Carbon - radiation effects ; carbon nanodots ; Catalysis ; Coloring Agents - chemistry ; Coloring Agents - isolation & purification ; Coloring Agents - radiation effects ; Drug Stability ; dyes ; dynamic light scattering ; fluorescence ; Fourier transform infrared spectra ; Fourier transform infrared spectroscopy ; FTIR spectroscopy ; Green Chemistry Technology - methods ; green synthesis ; highly stable CD ; industrial dye ; Light ; Materials Testing ; methylene blue dye degradation ; Musk melon extract ; nanofabrication ; Nanoparticles - chemistry ; Nanoparticles - radiation effects ; nanostructured materials ; naturally derived‐precursor material ; Particle Size ; photocatalyst material ; photocatalytic performance ; photocatalytic reactor ; photochemistry ; Photochemistry - methods ; photoluminescence ; photoluminescence spectroscopy ; quantum yield ; Research Article ; size 5 nm to 10 nm ; time 60 min ; transmission electron microscopy ; ultraviolet spectra ; ultraviolet‐visible spectroscopy ; UV‐vis spectroscopy ; visible spectra ; wastewater treatment ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - isolation & purification ; Water Pollutants, Chemical - radiation effects ; Water Purification - methods ; X‐ray diffraction</subject><ispartof>IET nanobiotechnology, 2017-06, Vol.11 (4), p.360-364</ispartof><rights>The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5226-2eab7b1526fef00153f37a64e339f075c316cced1c0150c52b379a51ea872263</citedby><cites>FETCH-LOGICAL-c5226-2eab7b1526fef00153f37a64e339f075c316cced1c0150c52b379a51ea872263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676195/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676195/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-nbt.2016.0025$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28530182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahajan, Rashmi</creatorcontrib><creatorcontrib>Bhadwal, Akhshay Singh</creatorcontrib><creatorcontrib>Kumar, Nishant</creatorcontrib><creatorcontrib>Madhusudanan, Mukil</creatorcontrib><creatorcontrib>Pudake, Ramesh Namdeo</creatorcontrib><creatorcontrib>Tripathi, Ravi Mani</creatorcontrib><title>Green synthesis of highly stable carbon nanodots and their photocatalytic performance</title><title>IET nanobiotechnology</title><addtitle>IET Nanobiotechnol</addtitle><description>The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet–visible (UV–vis) spectroscopy, Dynamic light scattering, photoluminescence spectroscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The as-prepared CDs possess an eminent fluorescence under UV–light (λex = 365 nm). The size range of CDs was found to be in the range of 5–10 nm. The authors further explored the use of such biosynthesised CDs as a photocatalyst material for removal of industrial dye. Degradation of methylene blue dye was performed in a photocatalytic reactor and monitored using UV–vis spectroscopy. The CDs show excellent dye degradation capability of 37.08% in 60 min and reaction rate of 0.0032 min−1. This study shows that synthesised CDs are highly stable in nature, and possess potential application in wastewater treatment.</description><subject>biosynthesis route</subject><subject>biosynthesised CD</subject><subject>carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon - radiation effects</subject><subject>carbon nanodots</subject><subject>Catalysis</subject><subject>Coloring Agents - chemistry</subject><subject>Coloring Agents - isolation & purification</subject><subject>Coloring Agents - radiation effects</subject><subject>Drug Stability</subject><subject>dyes</subject><subject>dynamic light scattering</subject><subject>fluorescence</subject><subject>Fourier transform infrared spectra</subject><subject>Fourier transform infrared spectroscopy</subject><subject>FTIR spectroscopy</subject><subject>Green Chemistry Technology - methods</subject><subject>green synthesis</subject><subject>highly stable CD</subject><subject>industrial dye</subject><subject>Light</subject><subject>Materials Testing</subject><subject>methylene blue dye degradation</subject><subject>Musk melon extract</subject><subject>nanofabrication</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - radiation effects</subject><subject>nanostructured materials</subject><subject>naturally derived‐precursor material</subject><subject>Particle Size</subject><subject>photocatalyst material</subject><subject>photocatalytic performance</subject><subject>photocatalytic reactor</subject><subject>photochemistry</subject><subject>Photochemistry - methods</subject><subject>photoluminescence</subject><subject>photoluminescence spectroscopy</subject><subject>quantum yield</subject><subject>Research Article</subject><subject>size 5 nm to 10 nm</subject><subject>time 60 min</subject><subject>transmission electron microscopy</subject><subject>ultraviolet spectra</subject><subject>ultraviolet‐visible spectroscopy</subject><subject>UV‐vis spectroscopy</subject><subject>visible spectra</subject><subject>wastewater treatment</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water Pollutants, Chemical - radiation effects</subject><subject>Water Purification - methods</subject><subject>X‐ray diffraction</subject><issn>1751-8741</issn><issn>1751-875X</issn><issn>1751-875X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9r2zAYh8XYWNNuH2CXousOTvUnsp0eBmtJ2kJYLxnsJmT5Va3iSEZSW_ztK5M2dFC2k17Q7_m90oPQN0rmlCyWZxZS4Zo0Z4SWc0KY-IBmtBK0qCvx5-NhXtAjdBzjPSFCCF5_RkesFpzQms3Q76sA4HAcXeog2oi9wZ296_oRx6SaHrBWofEOO-V861PEyrU4Z23AQ-eT1yqpfkxW4wGC8WGnnIYv6JNRfYSvL-cJ2q5X28vrYnN7dXP5c1NowVhZMFBN1VDBSgOGECq44ZUqF8D50pBKaE5LraGlOt-RzDS8WipBQdVV5vkJ-rGvHR6aHbQaXAqql0OwOxVG6ZWVf98428k7_yjrsirpUuQCui_QwccYwBxYSuSkWGbFMiuWk2I5Kc7M6dulB-LVaQ6c7wNPtofx_43y18WWXazzyKcvFXt4it37h-Cyv3--5vs7-ZvVdmp9s2NoDX8G8VGp4Q</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Mahajan, Rashmi</creator><creator>Bhadwal, Akhshay Singh</creator><creator>Kumar, Nishant</creator><creator>Madhusudanan, Mukil</creator><creator>Pudake, Ramesh Namdeo</creator><creator>Tripathi, Ravi Mani</creator><general>The Institution of Engineering and Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Green synthesis of highly stable carbon nanodots and their photocatalytic performance</title><author>Mahajan, Rashmi ; Bhadwal, Akhshay Singh ; Kumar, Nishant ; Madhusudanan, Mukil ; Pudake, Ramesh Namdeo ; Tripathi, Ravi Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5226-2eab7b1526fef00153f37a64e339f075c316cced1c0150c52b379a51ea872263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biosynthesis route</topic><topic>biosynthesised CD</topic><topic>carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon - radiation effects</topic><topic>carbon nanodots</topic><topic>Catalysis</topic><topic>Coloring Agents - chemistry</topic><topic>Coloring Agents - isolation & purification</topic><topic>Coloring Agents - radiation effects</topic><topic>Drug Stability</topic><topic>dyes</topic><topic>dynamic light scattering</topic><topic>fluorescence</topic><topic>Fourier transform infrared spectra</topic><topic>Fourier transform infrared spectroscopy</topic><topic>FTIR spectroscopy</topic><topic>Green Chemistry Technology - methods</topic><topic>green synthesis</topic><topic>highly stable CD</topic><topic>industrial dye</topic><topic>Light</topic><topic>Materials Testing</topic><topic>methylene blue dye degradation</topic><topic>Musk melon extract</topic><topic>nanofabrication</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - radiation effects</topic><topic>nanostructured materials</topic><topic>naturally derived‐precursor material</topic><topic>Particle Size</topic><topic>photocatalyst material</topic><topic>photocatalytic performance</topic><topic>photocatalytic reactor</topic><topic>photochemistry</topic><topic>Photochemistry - methods</topic><topic>photoluminescence</topic><topic>photoluminescence spectroscopy</topic><topic>quantum yield</topic><topic>Research Article</topic><topic>size 5 nm to 10 nm</topic><topic>time 60 min</topic><topic>transmission electron microscopy</topic><topic>ultraviolet spectra</topic><topic>ultraviolet‐visible spectroscopy</topic><topic>UV‐vis spectroscopy</topic><topic>visible spectra</topic><topic>wastewater treatment</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water Pollutants, Chemical - radiation effects</topic><topic>Water Purification - methods</topic><topic>X‐ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Rashmi</creatorcontrib><creatorcontrib>Bhadwal, Akhshay Singh</creatorcontrib><creatorcontrib>Kumar, Nishant</creatorcontrib><creatorcontrib>Madhusudanan, Mukil</creatorcontrib><creatorcontrib>Pudake, Ramesh Namdeo</creatorcontrib><creatorcontrib>Tripathi, Ravi Mani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahajan, Rashmi</au><au>Bhadwal, Akhshay Singh</au><au>Kumar, Nishant</au><au>Madhusudanan, Mukil</au><au>Pudake, Ramesh Namdeo</au><au>Tripathi, Ravi Mani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green synthesis of highly stable carbon nanodots and their photocatalytic performance</atitle><jtitle>IET nanobiotechnology</jtitle><addtitle>IET Nanobiotechnol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>360</spage><epage>364</epage><pages>360-364</pages><issn>1751-8741</issn><issn>1751-875X</issn><eissn>1751-875X</eissn><abstract>The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet–visible (UV–vis) spectroscopy, Dynamic light scattering, photoluminescence spectroscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The as-prepared CDs possess an eminent fluorescence under UV–light (λex = 365 nm). The size range of CDs was found to be in the range of 5–10 nm. The authors further explored the use of such biosynthesised CDs as a photocatalyst material for removal of industrial dye. Degradation of methylene blue dye was performed in a photocatalytic reactor and monitored using UV–vis spectroscopy. The CDs show excellent dye degradation capability of 37.08% in 60 min and reaction rate of 0.0032 min−1. This study shows that synthesised CDs are highly stable in nature, and possess potential application in wastewater treatment.</abstract><cop>United States</cop><pub>The Institution of Engineering and Technology</pub><pmid>28530182</pmid><doi>10.1049/iet-nbt.2016.0025</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8741 |
ispartof | IET nanobiotechnology, 2017-06, Vol.11 (4), p.360-364 |
issn | 1751-8741 1751-875X 1751-875X |
language | eng |
recordid | cdi_pubmed_primary_28530182 |
source | Wiley Online Library Open Access |
subjects | biosynthesis route biosynthesised CD carbon Carbon - chemistry Carbon - radiation effects carbon nanodots Catalysis Coloring Agents - chemistry Coloring Agents - isolation & purification Coloring Agents - radiation effects Drug Stability dyes dynamic light scattering fluorescence Fourier transform infrared spectra Fourier transform infrared spectroscopy FTIR spectroscopy Green Chemistry Technology - methods green synthesis highly stable CD industrial dye Light Materials Testing methylene blue dye degradation Musk melon extract nanofabrication Nanoparticles - chemistry Nanoparticles - radiation effects nanostructured materials naturally derived‐precursor material Particle Size photocatalyst material photocatalytic performance photocatalytic reactor photochemistry Photochemistry - methods photoluminescence photoluminescence spectroscopy quantum yield Research Article size 5 nm to 10 nm time 60 min transmission electron microscopy ultraviolet spectra ultraviolet‐visible spectroscopy UV‐vis spectroscopy visible spectra wastewater treatment Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification Water Pollutants, Chemical - radiation effects Water Purification - methods X‐ray diffraction |
title | Green synthesis of highly stable carbon nanodots and their photocatalytic performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20synthesis%20of%20highly%20stable%20carbon%20nanodots%20and%20their%20photocatalytic%20performance&rft.jtitle=IET%20nanobiotechnology&rft.au=Mahajan,%20Rashmi&rft.date=2017-06&rft.volume=11&rft.issue=4&rft.spage=360&rft.epage=364&rft.pages=360-364&rft.issn=1751-8741&rft.eissn=1751-875X&rft_id=info:doi/10.1049/iet-nbt.2016.0025&rft_dat=%3Cwiley_24P%3ENBT2BF00236%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28530182&rfr_iscdi=true |