Dynamic 2-D/3-D Rigid Registration Framework Using Point-To-Plane Correspondence Model

In image-guided interventional procedures, live 2-D X-ray images can be augmented with preoperative 3-D computed tomography or MRI images to provide planning landmarks and enhanced spatial perception. An accurate alignment between the 3-D and 2-D images is a prerequisite for fusion applications. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2017-09, Vol.36 (9), p.1939-1954
Hauptverfasser: Jian Wang, Schaffert, Roman, Borsdorf, Anja, Heigl, Benno, Xiaolin Huang, Hornegger, Joachim, Maier, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In image-guided interventional procedures, live 2-D X-ray images can be augmented with preoperative 3-D computed tomography or MRI images to provide planning landmarks and enhanced spatial perception. An accurate alignment between the 3-D and 2-D images is a prerequisite for fusion applications. This paper presents a dynamic rigid 2-D/3-D registration framework, which measures the local 3-D-to-2-D misalignment and efficiently constrains the update of both planar and non-planar 3-D rigid transformations using a novel point-to-plane correspondence model. In the simulation evaluation, the proposed method achieved a mean 3-D accuracy of 0.07 mm for the head phantom and 0.05 mm for the thorax phantom using single-view X-ray images. In the evaluation on dynamic motion compensation, our method significantly increases the accuracy comparing with the baseline method. The proposed method is also evaluated on a publicly-available clinical angiogram data set with "gold-standard" registrations. The proposed method achieved a mean 3-D accuracy below 0.8 mm and a mean 2-D accuracy below 0.3 mm using single-view X-ray images. It outperformed the state-of-the-art methods in both accuracy and robustness in single-view registration. The proposed method is intuitive, generic, and suitable for both initial and dynamic registration scenarios.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2017.2702100