Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D

Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2017-05, Vol.113 (6), p.681
Hauptverfasser: Demolli, Shemsi, Doddaballapur, Anuradha, Devraj, Kavi, Stark, Konstantin, Manavski, Yosif, Eckart, Annekathrin, Zehendner, Christoph M, Lucas, Tina, Korff, Thomas, Hecker, Markus, Massberg, Steffen, Liebner, Stefan, Kaluza, David, Boon, Reinier A, Dimmeler, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.
ISSN:1755-3245
DOI:10.1093/cvr/cvx032