Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal

We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-06, Vol.26 (6), p.2944-2956
Hauptverfasser: Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, Paisley, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2956
container_issue 6
container_start_page 2944
container_title IEEE transactions on image processing
container_volume 26
creator Xueyang Fu
Jiabin Huang
Xinghao Ding
Yinghao Liao
Paisley, John
description We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.
doi_str_mv 10.1109/TIP.2017.2691802
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28410108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7893758</ieee_id><sourcerecordid>1888680689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGI4jeTUzMHr0UZ9ttd-uN4BcJfgTw3Owus1BpKe62Gv-9JSCnmWSe953kIeSSQZ8xSG9no_d-CEz0wyRlEsIj0mUpZwEAD4_bHWIRCMbTDjnz_hOA8Zglp6QTSs6AgeySl2GByuXrBa2XSKerHP0dHdB7xA19xfqncis6cGaZ12jqxiG1laPTli8wGJVqgXSi8jWdYFl9q-KcnFhVeLzYzx75eHyYDZ-D8dvTaDgYByZiaR1oK3QcyUhrMDGijDVD0HyeyJhHJrJSaxVapTQamwhuVZoo5MrYCAwqIaIeudn1blz11aCvszL3BotCrbFqfMaklImERKYtCjvUuMp7hzbbuLxU7jdjkG0lZq3EbCsx20tsI9f79kaXOD8E_q21wNUOyBHxcBbtNxHL6A8AtnXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888680689</pqid></control><display><type>article</type><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</creator><creatorcontrib>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</creatorcontrib><description>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2691802</identifier><identifier>PMID: 28410108</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>convolutional neural networks ; deep learning ; Image enhancement ; Linear programming ; Machine learning ; Rain ; Rain removal ; Testing ; Training</subject><ispartof>IEEE transactions on image processing, 2017-06, Vol.26 (6), p.2944-2956</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</citedby><cites>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</cites><orcidid>0000-0003-2288-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7893758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7893758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28410108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xueyang Fu</creatorcontrib><creatorcontrib>Jiabin Huang</creatorcontrib><creatorcontrib>Xinghao Ding</creatorcontrib><creatorcontrib>Yinghao Liao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</description><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>Image enhancement</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Rain</subject><subject>Rain removal</subject><subject>Testing</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGI4jeTUzMHr0UZ9ttd-uN4BcJfgTw3Owus1BpKe62Gv-9JSCnmWSe953kIeSSQZ8xSG9no_d-CEz0wyRlEsIj0mUpZwEAD4_bHWIRCMbTDjnz_hOA8Zglp6QTSs6AgeySl2GByuXrBa2XSKerHP0dHdB7xA19xfqncis6cGaZ12jqxiG1laPTli8wGJVqgXSi8jWdYFl9q-KcnFhVeLzYzx75eHyYDZ-D8dvTaDgYByZiaR1oK3QcyUhrMDGijDVD0HyeyJhHJrJSaxVapTQamwhuVZoo5MrYCAwqIaIeudn1blz11aCvszL3BotCrbFqfMaklImERKYtCjvUuMp7hzbbuLxU7jdjkG0lZq3EbCsx20tsI9f79kaXOD8E_q21wNUOyBHxcBbtNxHL6A8AtnXx</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Xueyang Fu</creator><creator>Jiabin Huang</creator><creator>Xinghao Ding</creator><creator>Yinghao Liao</creator><creator>Paisley, John</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></search><sort><creationdate>201706</creationdate><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><author>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>Image enhancement</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Rain</topic><topic>Rain removal</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xueyang Fu</creatorcontrib><creatorcontrib>Jiabin Huang</creatorcontrib><creatorcontrib>Xinghao Ding</creatorcontrib><creatorcontrib>Yinghao Liao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueyang Fu</au><au>Jiabin Huang</au><au>Xinghao Ding</au><au>Yinghao Liao</au><au>Paisley, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-06</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>2944</spage><epage>2956</epage><pages>2944-2956</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28410108</pmid><doi>10.1109/TIP.2017.2691802</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-06, Vol.26 (6), p.2944-2956
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_28410108
source IEEE Electronic Library (IEL)
subjects convolutional neural networks
deep learning
Image enhancement
Linear programming
Machine learning
Rain
Rain removal
Testing
Training
title Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clearing%20the%20Skies:%20A%20Deep%20Network%20Architecture%20for%20Single-Image%20Rain%20Removal&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xueyang%20Fu&rft.date=2017-06&rft.volume=26&rft.issue=6&rft.spage=2944&rft.epage=2956&rft.pages=2944-2956&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2691802&rft_dat=%3Cproquest_RIE%3E1888680689%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888680689&rft_id=info:pmid/28410108&rft_ieee_id=7893758&rfr_iscdi=true