Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal
We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corres...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-06, Vol.26 (6), p.2944-2956 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2956 |
---|---|
container_issue | 6 |
container_start_page | 2944 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Xueyang Fu Jiabin Huang Xinghao Ding Yinghao Liao Paisley, John |
description | We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training. |
doi_str_mv | 10.1109/TIP.2017.2691802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28410108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7893758</ieee_id><sourcerecordid>1888680689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGI4jeTUzMHr0UZ9ttd-uN4BcJfgTw3Owus1BpKe62Gv-9JSCnmWSe953kIeSSQZ8xSG9no_d-CEz0wyRlEsIj0mUpZwEAD4_bHWIRCMbTDjnz_hOA8Zglp6QTSs6AgeySl2GByuXrBa2XSKerHP0dHdB7xA19xfqncis6cGaZ12jqxiG1laPTli8wGJVqgXSi8jWdYFl9q-KcnFhVeLzYzx75eHyYDZ-D8dvTaDgYByZiaR1oK3QcyUhrMDGijDVD0HyeyJhHJrJSaxVapTQamwhuVZoo5MrYCAwqIaIeudn1blz11aCvszL3BotCrbFqfMaklImERKYtCjvUuMp7hzbbuLxU7jdjkG0lZq3EbCsx20tsI9f79kaXOD8E_q21wNUOyBHxcBbtNxHL6A8AtnXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888680689</pqid></control><display><type>article</type><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</creator><creatorcontrib>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</creatorcontrib><description>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2691802</identifier><identifier>PMID: 28410108</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>convolutional neural networks ; deep learning ; Image enhancement ; Linear programming ; Machine learning ; Rain ; Rain removal ; Testing ; Training</subject><ispartof>IEEE transactions on image processing, 2017-06, Vol.26 (6), p.2944-2956</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</citedby><cites>FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</cites><orcidid>0000-0003-2288-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7893758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7893758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28410108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xueyang Fu</creatorcontrib><creatorcontrib>Jiabin Huang</creatorcontrib><creatorcontrib>Xinghao Ding</creatorcontrib><creatorcontrib>Yinghao Liao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</description><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>Image enhancement</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Rain</subject><subject>Rain removal</subject><subject>Testing</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGI4jeTUzMHr0UZ9ttd-uN4BcJfgTw3Owus1BpKe62Gv-9JSCnmWSe953kIeSSQZ8xSG9no_d-CEz0wyRlEsIj0mUpZwEAD4_bHWIRCMbTDjnz_hOA8Zglp6QTSs6AgeySl2GByuXrBa2XSKerHP0dHdB7xA19xfqncis6cGaZ12jqxiG1laPTli8wGJVqgXSi8jWdYFl9q-KcnFhVeLzYzx75eHyYDZ-D8dvTaDgYByZiaR1oK3QcyUhrMDGijDVD0HyeyJhHJrJSaxVapTQamwhuVZoo5MrYCAwqIaIeudn1blz11aCvszL3BotCrbFqfMaklImERKYtCjvUuMp7hzbbuLxU7jdjkG0lZq3EbCsx20tsI9f79kaXOD8E_q21wNUOyBHxcBbtNxHL6A8AtnXx</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Xueyang Fu</creator><creator>Jiabin Huang</creator><creator>Xinghao Ding</creator><creator>Yinghao Liao</creator><creator>Paisley, John</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></search><sort><creationdate>201706</creationdate><title>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</title><author>Xueyang Fu ; Jiabin Huang ; Xinghao Ding ; Yinghao Liao ; Paisley, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bf7b5383bb0c5ee85b1e0b4d68543c3f8bba2faabecf674fa96ae4acf30cea773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>Image enhancement</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Rain</topic><topic>Rain removal</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xueyang Fu</creatorcontrib><creatorcontrib>Jiabin Huang</creatorcontrib><creatorcontrib>Xinghao Ding</creatorcontrib><creatorcontrib>Yinghao Liao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueyang Fu</au><au>Jiabin Huang</au><au>Xinghao Ding</au><au>Yinghao Liao</au><au>Paisley, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-06</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>2944</spage><epage>2956</epage><pages>2944-2956</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28410108</pmid><doi>10.1109/TIP.2017.2691802</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-06, Vol.26 (6), p.2944-2956 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_28410108 |
source | IEEE Electronic Library (IEL) |
subjects | convolutional neural networks deep learning Image enhancement Linear programming Machine learning Rain Rain removal Testing Training |
title | Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clearing%20the%20Skies:%20A%20Deep%20Network%20Architecture%20for%20Single-Image%20Rain%20Removal&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Xueyang%20Fu&rft.date=2017-06&rft.volume=26&rft.issue=6&rft.spage=2944&rft.epage=2956&rft.pages=2944-2956&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2691802&rft_dat=%3Cproquest_RIE%3E1888680689%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888680689&rft_id=info:pmid/28410108&rft_ieee_id=7893758&rfr_iscdi=true |