Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures

Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2017-05, Vol.189 (5), p.463-473
Hauptverfasser: Bay, Rachael A., Rose, Noah, Barrett, Rowan, Bernatchez, Louis, Ghalambor, Cameron K., Lasky, Jesse R., Brem, Rachel B., Palumbi, Stephen R., Ralph, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 473
container_issue 5
container_start_page 463
container_title The American naturalist
container_volume 189
creator Bay, Rachael A.
Rose, Noah
Barrett, Rowan
Bernatchez, Louis
Ghalambor, Cameron K.
Lasky, Jesse R.
Brem, Rachel B.
Palumbi, Stephen R.
Ralph, Peter
description Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.
doi_str_mv 10.1086/691233
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28410032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26519313</jstor_id><sourcerecordid>26519313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-39d3e11f4f61ea88d24ae363063e255a527c679077fe3431748350cab87b62913</originalsourceid><addsrcrecordid>eNqN0F9r3SAYBnAZLetZt32DjcDG6E069Y1RL8vhbCsUWsp6HTzmzWkOiaZqCvv285D-gV3tSsSfz6sPIR8ZPWdU1d9rzTjAG7JiAmQpgMMRWVFKoaSskifkXYz7vNWVFm_JCVcVy2d8RexNwLa3qXe74hbj5F3EWCRfrL1LOE4-mPCn2LjHPng3oktmKNb3xu2wuIuHS5tHP8yp9-7gnhOKi2Dv-4Q2zQHje3LcmSHih6f1lNz92Pxe_yqvrn9eri-uSguapRJ0C8hYV3U1Q6NUyyuDUAOtAbkQRnBpa6mplB1CBUxWCgS1ZqvktuaawSk5W3Kn4B9mjKkZ-2hxGIxDP8eGKaVyAJcq0y__0L2fg8uvy0orLZgQNKtvi7LBxxiwa6bQj_mjDaPNofZmqT3Dz09x83bE9oU995zB1wXMuRdrdn7KvcTXoS85Z__BmqntMv200H1MPrxOrAXTwAD-AiqvoHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898951550</pqid></control><display><type>article</type><title>Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bay, Rachael A. ; Rose, Noah ; Barrett, Rowan ; Bernatchez, Louis ; Ghalambor, Cameron K. ; Lasky, Jesse R. ; Brem, Rachel B. ; Palumbi, Stephen R. ; Ralph, Peter</creator><contributor>Yannis Michalakis ; Scott L. Nuismer</contributor><creatorcontrib>Bay, Rachael A. ; Rose, Noah ; Barrett, Rowan ; Bernatchez, Louis ; Ghalambor, Cameron K. ; Lasky, Jesse R. ; Brem, Rachel B. ; Palumbi, Stephen R. ; Ralph, Peter ; Yannis Michalakis ; Scott L. Nuismer</creatorcontrib><description>Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/691233</identifier><identifier>PMID: 28410032</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Adaptation ; Adaptation, Biological ; Biodiversity ; Biological Evolution ; Climate Change ; Ecosystem ; Environmental changes ; Evolution ; Fitness ; Gene sequencing ; Genome ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing ; Information processing ; Molecular modelling ; Next-generation sequencing ; Populations ; Predictions ; Reproductive fitness ; Species ; Synthesis</subject><ispartof>The American naturalist, 2017-05, Vol.189 (5), p.463-473</ispartof><rights>2017 by The University of Chicago</rights><rights>2017 by The University of Chicago. All rights reserved. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-commercial reuse of the work with attribution. For commercial use, contact .</rights><rights>Copyright University of Chicago, acting through its Press May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-39d3e11f4f61ea88d24ae363063e255a527c679077fe3431748350cab87b62913</citedby><cites>FETCH-LOGICAL-c391t-39d3e11f4f61ea88d24ae363063e255a527c679077fe3431748350cab87b62913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26519313$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26519313$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28410032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yannis Michalakis</contributor><contributor>Scott L. Nuismer</contributor><creatorcontrib>Bay, Rachael A.</creatorcontrib><creatorcontrib>Rose, Noah</creatorcontrib><creatorcontrib>Barrett, Rowan</creatorcontrib><creatorcontrib>Bernatchez, Louis</creatorcontrib><creatorcontrib>Ghalambor, Cameron K.</creatorcontrib><creatorcontrib>Lasky, Jesse R.</creatorcontrib><creatorcontrib>Brem, Rachel B.</creatorcontrib><creatorcontrib>Palumbi, Stephen R.</creatorcontrib><creatorcontrib>Ralph, Peter</creatorcontrib><title>Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.</description><subject>Adaptation</subject><subject>Adaptation, Biological</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Gene sequencing</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Information processing</subject><subject>Molecular modelling</subject><subject>Next-generation sequencing</subject><subject>Populations</subject><subject>Predictions</subject><subject>Reproductive fitness</subject><subject>Species</subject><subject>Synthesis</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0F9r3SAYBnAZLetZt32DjcDG6E069Y1RL8vhbCsUWsp6HTzmzWkOiaZqCvv285D-gV3tSsSfz6sPIR8ZPWdU1d9rzTjAG7JiAmQpgMMRWVFKoaSskifkXYz7vNWVFm_JCVcVy2d8RexNwLa3qXe74hbj5F3EWCRfrL1LOE4-mPCn2LjHPng3oktmKNb3xu2wuIuHS5tHP8yp9-7gnhOKi2Dv-4Q2zQHje3LcmSHih6f1lNz92Pxe_yqvrn9eri-uSguapRJ0C8hYV3U1Q6NUyyuDUAOtAbkQRnBpa6mplB1CBUxWCgS1ZqvktuaawSk5W3Kn4B9mjKkZ-2hxGIxDP8eGKaVyAJcq0y__0L2fg8uvy0orLZgQNKtvi7LBxxiwa6bQj_mjDaPNofZmqT3Dz09x83bE9oU995zB1wXMuRdrdn7KvcTXoS85Z__BmqntMv200H1MPrxOrAXTwAD-AiqvoHM</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Bay, Rachael A.</creator><creator>Rose, Noah</creator><creator>Barrett, Rowan</creator><creator>Bernatchez, Louis</creator><creator>Ghalambor, Cameron K.</creator><creator>Lasky, Jesse R.</creator><creator>Brem, Rachel B.</creator><creator>Palumbi, Stephen R.</creator><creator>Ralph, Peter</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures</title><author>Bay, Rachael A. ; Rose, Noah ; Barrett, Rowan ; Bernatchez, Louis ; Ghalambor, Cameron K. ; Lasky, Jesse R. ; Brem, Rachel B. ; Palumbi, Stephen R. ; Ralph, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-39d3e11f4f61ea88d24ae363063e255a527c679077fe3431748350cab87b62913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Adaptation, Biological</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Gene sequencing</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Information processing</topic><topic>Molecular modelling</topic><topic>Next-generation sequencing</topic><topic>Populations</topic><topic>Predictions</topic><topic>Reproductive fitness</topic><topic>Species</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bay, Rachael A.</creatorcontrib><creatorcontrib>Rose, Noah</creatorcontrib><creatorcontrib>Barrett, Rowan</creatorcontrib><creatorcontrib>Bernatchez, Louis</creatorcontrib><creatorcontrib>Ghalambor, Cameron K.</creatorcontrib><creatorcontrib>Lasky, Jesse R.</creatorcontrib><creatorcontrib>Brem, Rachel B.</creatorcontrib><creatorcontrib>Palumbi, Stephen R.</creatorcontrib><creatorcontrib>Ralph, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bay, Rachael A.</au><au>Rose, Noah</au><au>Barrett, Rowan</au><au>Bernatchez, Louis</au><au>Ghalambor, Cameron K.</au><au>Lasky, Jesse R.</au><au>Brem, Rachel B.</au><au>Palumbi, Stephen R.</au><au>Ralph, Peter</au><au>Yannis Michalakis</au><au>Scott L. Nuismer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>189</volume><issue>5</issue><spage>463</spage><epage>473</epage><pages>463-473</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><abstract>Rapid environmental change currently presents a major threat to global biodiversity and ecosystem functions, and understanding impacts on individual populations is critical to creating reliable predictions and mitigation plans. One emerging tool for this goal is high-throughput sequencing technology, which can now be used to scan the genome for signs of environmental selection in any species and any system. This explosion of data provides a powerful new window into the molecular mechanisms of adaptation, and although there has been some success in using genomic data to predict responses to selection in fields such as agriculture, thus far genomic data are rarely integrated into predictive frameworks of future adaptation in natural populations. Here, we review both theoretical and empirical studies of adaptation to rapid environmental change, focusing on areas where genomic data are poised to contribute to our ability to estimate species and population persistence and adaptation. We advocate for the need to study and model evolutionary response architectures, which integrate spatial information, fitness estimates, and plasticity with genetic architecture. Understanding how these factors contribute to adaptive responses is essential in efforts to predict the responses of species and ecosystems to future environmental change.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>28410032</pmid><doi>10.1086/691233</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2017-05, Vol.189 (5), p.463-473
issn 0003-0147
1537-5323
language eng
recordid cdi_pubmed_primary_28410032
source Jstor Complete Legacy; MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
Adaptation, Biological
Biodiversity
Biological Evolution
Climate Change
Ecosystem
Environmental changes
Evolution
Fitness
Gene sequencing
Genome
Genomes
Genomics
High-Throughput Nucleotide Sequencing
Information processing
Molecular modelling
Next-generation sequencing
Populations
Predictions
Reproductive fitness
Species
Synthesis
title Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Responses%20to%20Contemporary%20Environmental%20Change%20Using%20Evolutionary%20Response%20Architectures&rft.jtitle=The%20American%20naturalist&rft.au=Bay,%20Rachael%20A.&rft.date=2017-05-01&rft.volume=189&rft.issue=5&rft.spage=463&rft.epage=473&rft.pages=463-473&rft.issn=0003-0147&rft.eissn=1537-5323&rft_id=info:doi/10.1086/691233&rft_dat=%3Cjstor_pubme%3E26519313%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898951550&rft_id=info:pmid/28410032&rft_jstor_id=26519313&rfr_iscdi=true