Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-04, Vol.146 (13), p.134109-134109
Hauptverfasser: Yoshizawa, Terutaka, Zou, Wenli, Cremer, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σ i s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σ iso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%–0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4979499