Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors

Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2017-04, Vol.14 (129), p.20160938-20160938
Hauptverfasser: Heras, Francisco J. H., Anderson, John, Laughlin, Simon B., Niven, Jeremy E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20160938
container_issue 129
container_start_page 20160938
container_title Journal of the Royal Society interface
container_volume 14
creator Heras, Francisco J. H.
Anderson, John
Laughlin, Simon B.
Niven, Jeremy E.
description Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.
doi_str_mv 10.1098/rsif.2016.0938
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28381642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901754421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-4cbff26f8966b5816b09956808bd69d9582fcd9329880be544e5b7481b6e4f393</originalsourceid><addsrcrecordid>eNqFkd2L1DAUxYso7rr66qMEfBGkY5KmafIiLIuriwuCX6-hTW86WTJJTdqR-tebYcZhd0F9uoH8cs65OUXxnOAVwVK8icmaFcWEr7CsxIPilDSMljXn9OHxLORJ8SSlG4yrpqrrx8UJFZUgnNHTQn8PbmoHKHsYwffgJ_TxNdLr1ntwCdnNGMMW0LQGBB7isCAwxmoLXi8oGJTs4FvnrB-Q9ahz4adxCxrXYQoRNIx5pKfFI9O6BM8O86z4dvnu68WH8vrT-6uL8-tS15JMJdOdMZQbITnv6pyvw1Lm9Fh0PZe9rAU1upcVlULgDmrGoO4aJkjHgZlKVmfF273uOHcb6HVeJrZOjdFu2rio0Fp198bbtRrCVtWMMIl5Fnh1EIjhxwxpUhubNDjXeghzUkRi0mRfSv6PCsFyzNxJRl_eQ2_CHPOv7QQFwwJz2mRqtad0DClFMMfcBKtd1WpXtdpVrQ6yL25ve8T_dJuBag_EsGSzkEubllvef5Md_vXq85eryy1hllCpsKgIblj2Ur_suBciTNmUZlA74K70faff9mzZfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984080627</pqid></control><display><type>article</type><title>Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors</title><source>MEDLINE</source><source>PubMed Central</source><creator>Heras, Francisco J. H. ; Anderson, John ; Laughlin, Simon B. ; Niven, Jeremy E.</creator><creatorcontrib>Heras, Francisco J. H. ; Anderson, John ; Laughlin, Simon B. ; Niven, Jeremy E.</creatorcontrib><description>Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2016.0938</identifier><identifier>PMID: 28381642</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Action potential ; Action Potentials ; Analogue Coding ; Animals ; Bandwidths ; Calliphoridae ; Coding ; Dendrites ; Depolarization ; Diptera - physiology ; Electric Conductivity ; Electric potential ; Energy conservation ; Energy consumption ; Energy conversion efficiency ; Energy efficiency ; Energy Metabolism ; Energy-Aware Bandwidth And Gain Control ; Feedback ; Firing pattern ; Insect Graded-Potential Neuron ; Insect Proteins - physiology ; Ion Channel Gating ; Life Sciences–Engineering interface ; Light adaptation ; Membrane Impedance ; Membrane potential ; Membrane Potentials ; Membrane resistance ; Models, Biological ; Negative Feedback ; Neural coding ; Neurons ; Photoreceptor Cells, Invertebrate - physiology ; Photoreceptors ; Potassium ; Potassium channels (voltage-gated) ; Potassium Channels, Voltage-Gated - physiology ; Potential energy ; Signaling ; Spiking ; Voltage-Sensitive Potassium Conductance</subject><ispartof>Journal of the Royal Society interface, 2017-04, Vol.14 (129), p.20160938-20160938</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Apr 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-4cbff26f8966b5816b09956808bd69d9582fcd9329880be544e5b7481b6e4f393</citedby><cites>FETCH-LOGICAL-c591t-4cbff26f8966b5816b09956808bd69d9582fcd9329880be544e5b7481b6e4f393</cites><orcidid>0000-0001-5946-6313 ; 0000-0001-7786-5254 ; 0000-0003-4659-6543 ; 0000-0001-8124-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414906/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414906/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28381642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heras, Francisco J. H.</creatorcontrib><creatorcontrib>Anderson, John</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><creatorcontrib>Niven, Jeremy E.</creatorcontrib><title>Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc</addtitle><addtitle>J R Soc Interface</addtitle><description>Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Analogue Coding</subject><subject>Animals</subject><subject>Bandwidths</subject><subject>Calliphoridae</subject><subject>Coding</subject><subject>Dendrites</subject><subject>Depolarization</subject><subject>Diptera - physiology</subject><subject>Electric Conductivity</subject><subject>Electric potential</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy Metabolism</subject><subject>Energy-Aware Bandwidth And Gain Control</subject><subject>Feedback</subject><subject>Firing pattern</subject><subject>Insect Graded-Potential Neuron</subject><subject>Insect Proteins - physiology</subject><subject>Ion Channel Gating</subject><subject>Life Sciences–Engineering interface</subject><subject>Light adaptation</subject><subject>Membrane Impedance</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Membrane resistance</subject><subject>Models, Biological</subject><subject>Negative Feedback</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Photoreceptor Cells, Invertebrate - physiology</subject><subject>Photoreceptors</subject><subject>Potassium</subject><subject>Potassium channels (voltage-gated)</subject><subject>Potassium Channels, Voltage-Gated - physiology</subject><subject>Potential energy</subject><subject>Signaling</subject><subject>Spiking</subject><subject>Voltage-Sensitive Potassium Conductance</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd2L1DAUxYso7rr66qMEfBGkY5KmafIiLIuriwuCX6-hTW86WTJJTdqR-tebYcZhd0F9uoH8cs65OUXxnOAVwVK8icmaFcWEr7CsxIPilDSMljXn9OHxLORJ8SSlG4yrpqrrx8UJFZUgnNHTQn8PbmoHKHsYwffgJ_TxNdLr1ntwCdnNGMMW0LQGBB7isCAwxmoLXi8oGJTs4FvnrB-Q9ahz4adxCxrXYQoRNIx5pKfFI9O6BM8O86z4dvnu68WH8vrT-6uL8-tS15JMJdOdMZQbITnv6pyvw1Lm9Fh0PZe9rAU1upcVlULgDmrGoO4aJkjHgZlKVmfF273uOHcb6HVeJrZOjdFu2rio0Fp198bbtRrCVtWMMIl5Fnh1EIjhxwxpUhubNDjXeghzUkRi0mRfSv6PCsFyzNxJRl_eQ2_CHPOv7QQFwwJz2mRqtad0DClFMMfcBKtd1WpXtdpVrQ6yL25ve8T_dJuBag_EsGSzkEubllvef5Md_vXq85eryy1hllCpsKgIblj2Ur_suBciTNmUZlA74K70faff9mzZfQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Heras, Francisco J. H.</creator><creator>Anderson, John</creator><creator>Laughlin, Simon B.</creator><creator>Niven, Jeremy E.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5946-6313</orcidid><orcidid>https://orcid.org/0000-0001-7786-5254</orcidid><orcidid>https://orcid.org/0000-0003-4659-6543</orcidid><orcidid>https://orcid.org/0000-0001-8124-2359</orcidid></search><sort><creationdate>20170401</creationdate><title>Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors</title><author>Heras, Francisco J. H. ; Anderson, John ; Laughlin, Simon B. ; Niven, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-4cbff26f8966b5816b09956808bd69d9582fcd9329880be544e5b7481b6e4f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Analogue Coding</topic><topic>Animals</topic><topic>Bandwidths</topic><topic>Calliphoridae</topic><topic>Coding</topic><topic>Dendrites</topic><topic>Depolarization</topic><topic>Diptera - physiology</topic><topic>Electric Conductivity</topic><topic>Electric potential</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy Metabolism</topic><topic>Energy-Aware Bandwidth And Gain Control</topic><topic>Feedback</topic><topic>Firing pattern</topic><topic>Insect Graded-Potential Neuron</topic><topic>Insect Proteins - physiology</topic><topic>Ion Channel Gating</topic><topic>Life Sciences–Engineering interface</topic><topic>Light adaptation</topic><topic>Membrane Impedance</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Membrane resistance</topic><topic>Models, Biological</topic><topic>Negative Feedback</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Photoreceptor Cells, Invertebrate - physiology</topic><topic>Photoreceptors</topic><topic>Potassium</topic><topic>Potassium channels (voltage-gated)</topic><topic>Potassium Channels, Voltage-Gated - physiology</topic><topic>Potential energy</topic><topic>Signaling</topic><topic>Spiking</topic><topic>Voltage-Sensitive Potassium Conductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heras, Francisco J. H.</creatorcontrib><creatorcontrib>Anderson, John</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><creatorcontrib>Niven, Jeremy E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heras, Francisco J. H.</au><au>Anderson, John</au><au>Laughlin, Simon B.</au><au>Niven, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc</stitle><addtitle>J R Soc Interface</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>14</volume><issue>129</issue><spage>20160938</spage><epage>20160938</epage><pages>20160938-20160938</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28381642</pmid><doi>10.1098/rsif.2016.0938</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5946-6313</orcidid><orcidid>https://orcid.org/0000-0001-7786-5254</orcidid><orcidid>https://orcid.org/0000-0003-4659-6543</orcidid><orcidid>https://orcid.org/0000-0001-8124-2359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2017-04, Vol.14 (129), p.20160938-20160938
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_28381642
source MEDLINE; PubMed Central
subjects Action potential
Action Potentials
Analogue Coding
Animals
Bandwidths
Calliphoridae
Coding
Dendrites
Depolarization
Diptera - physiology
Electric Conductivity
Electric potential
Energy conservation
Energy consumption
Energy conversion efficiency
Energy efficiency
Energy Metabolism
Energy-Aware Bandwidth And Gain Control
Feedback
Firing pattern
Insect Graded-Potential Neuron
Insect Proteins - physiology
Ion Channel Gating
Life Sciences–Engineering interface
Light adaptation
Membrane Impedance
Membrane potential
Membrane Potentials
Membrane resistance
Models, Biological
Negative Feedback
Neural coding
Neurons
Photoreceptor Cells, Invertebrate - physiology
Photoreceptors
Potassium
Potassium channels (voltage-gated)
Potassium Channels, Voltage-Gated - physiology
Potential energy
Signaling
Spiking
Voltage-Sensitive Potassium Conductance
title Voltage-dependent K+ channels improve the energy efficiency of signalling in blowfly photoreceptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-dependent%20K+%20channels%20improve%20the%20energy%20efficiency%20of%20signalling%20in%20blowfly%20photoreceptors&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Heras,%20Francisco%20J.%20H.&rft.date=2017-04-01&rft.volume=14&rft.issue=129&rft.spage=20160938&rft.epage=20160938&rft.pages=20160938-20160938&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2016.0938&rft_dat=%3Cproquest_pubme%3E1901754421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984080627&rft_id=info:pmid/28381642&rfr_iscdi=true