Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning
In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-05, Vol.26 (5), p.2408-2423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2423 |
---|---|
container_issue | 5 |
container_start_page | 2408 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Zheng, Jianwei Yang, Ping Chen, Shengyong Shen, Guojiang Wang, Wanliang |
description | In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on. |
doi_str_mv | 10.1109/TIP.2017.2681841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28320663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7876799</ieee_id><sourcerecordid>1879663733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoWh93QZAFL162ZnazeRxL8VEoKGrpcUnTSU1pd9dkV_C_N7W1B08zMN9vmPkIuQTaB6Dq7n300s8oiH7GJUgGB6QHikFKKcsOY08LkQpg6oSchrCkFFgB_JicZDLPKOd5j0xGLXrdui9MXjEd1lVovXYVzpNHX3dN8tZoHzB50GYDmHpRudbVVTJ17UcymOvmNzpFt_hoQzJG7StXLc7JkdWrgBe7ekYmD_fvw6d0_Pw4Gg7GqcmZaNOMIeMM0eZgjNWATFttZ9TOijmN1ypQBqnhUgg-45Ypoa2QVqiYKwwU-Rm53e5tfP3ZYWjLtQsGVytdYd2FEqRQ8U2R5xG9-Ycu685X8bpISUkZExQiRbeU8XUIHm3ZeLfW_rsEWm6Ul1F5uVFe7pTHyPVucTdb43wf-HMcgast4BBxPxZScKFU_gPUVYRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888044701</pqid></control><display><type>article</type><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</creator><creatorcontrib>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</creatorcontrib><description>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2681841</identifier><identifier>PMID: 28320663</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; classification ; Constraints ; Dictionaries ; Face ; Face recognition ; Facial recognition technology ; group constraints ; Group theory ; Learning ; Lighting ; Occlusion ; Optimization ; Regularization ; Robustness ; Robustness (mathematics) ; Sparse representation ; Training ; weights learning</subject><ispartof>IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2408-2423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</citedby><cites>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</cites><orcidid>0000-0001-6017-0552 ; 0000-0002-6705-3831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7876799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7876799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28320663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Wang, Wanliang</creatorcontrib><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</description><subject>Algorithms</subject><subject>classification</subject><subject>Constraints</subject><subject>Dictionaries</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>group constraints</subject><subject>Group theory</subject><subject>Learning</subject><subject>Lighting</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Sparse representation</subject><subject>Training</subject><subject>weights learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQh4MoWh93QZAFL162ZnazeRxL8VEoKGrpcUnTSU1pd9dkV_C_N7W1B08zMN9vmPkIuQTaB6Dq7n300s8oiH7GJUgGB6QHikFKKcsOY08LkQpg6oSchrCkFFgB_JicZDLPKOd5j0xGLXrdui9MXjEd1lVovXYVzpNHX3dN8tZoHzB50GYDmHpRudbVVTJ17UcymOvmNzpFt_hoQzJG7StXLc7JkdWrgBe7ekYmD_fvw6d0_Pw4Gg7GqcmZaNOMIeMM0eZgjNWATFttZ9TOijmN1ypQBqnhUgg-45Ypoa2QVqiYKwwU-Rm53e5tfP3ZYWjLtQsGVytdYd2FEqRQ8U2R5xG9-Ycu685X8bpISUkZExQiRbeU8XUIHm3ZeLfW_rsEWm6Ul1F5uVFe7pTHyPVucTdb43wf-HMcgast4BBxPxZScKFU_gPUVYRi</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zheng, Jianwei</creator><creator>Yang, Ping</creator><creator>Chen, Shengyong</creator><creator>Shen, Guojiang</creator><creator>Wang, Wanliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-6705-3831</orcidid></search><sort><creationdate>20170501</creationdate><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><author>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>Constraints</topic><topic>Dictionaries</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>group constraints</topic><topic>Group theory</topic><topic>Learning</topic><topic>Lighting</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Sparse representation</topic><topic>Training</topic><topic>weights learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Wang, Wanliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Jianwei</au><au>Yang, Ping</au><au>Chen, Shengyong</au><au>Shen, Guojiang</au><au>Wang, Wanliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>2408</spage><epage>2423</epage><pages>2408-2423</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28320663</pmid><doi>10.1109/TIP.2017.2681841</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-6705-3831</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2408-2423 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_28320663 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms classification Constraints Dictionaries Face Face recognition Facial recognition technology group constraints Group theory Learning Lighting Occlusion Optimization Regularization Robustness Robustness (mathematics) Sparse representation Training weights learning |
title | Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Re-Constrained%20Group%20Sparse%20Face%20Recognition%20With%20Adaptive%20Weights%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zheng,%20Jianwei&rft.date=2017-05-01&rft.volume=26&rft.issue=5&rft.spage=2408&rft.epage=2423&rft.pages=2408-2423&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2681841&rft_dat=%3Cproquest_RIE%3E1879663733%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888044701&rft_id=info:pmid/28320663&rft_ieee_id=7876799&rfr_iscdi=true |