Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning

In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-05, Vol.26 (5), p.2408-2423
Hauptverfasser: Zheng, Jianwei, Yang, Ping, Chen, Shengyong, Shen, Guojiang, Wang, Wanliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2423
container_issue 5
container_start_page 2408
container_title IEEE transactions on image processing
container_volume 26
creator Zheng, Jianwei
Yang, Ping
Chen, Shengyong
Shen, Guojiang
Wang, Wanliang
description In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.
doi_str_mv 10.1109/TIP.2017.2681841
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28320663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7876799</ieee_id><sourcerecordid>1879663733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoWh93QZAFL162ZnazeRxL8VEoKGrpcUnTSU1pd9dkV_C_N7W1B08zMN9vmPkIuQTaB6Dq7n300s8oiH7GJUgGB6QHikFKKcsOY08LkQpg6oSchrCkFFgB_JicZDLPKOd5j0xGLXrdui9MXjEd1lVovXYVzpNHX3dN8tZoHzB50GYDmHpRudbVVTJ17UcymOvmNzpFt_hoQzJG7StXLc7JkdWrgBe7ekYmD_fvw6d0_Pw4Gg7GqcmZaNOMIeMM0eZgjNWATFttZ9TOijmN1ypQBqnhUgg-45Ypoa2QVqiYKwwU-Rm53e5tfP3ZYWjLtQsGVytdYd2FEqRQ8U2R5xG9-Ycu685X8bpISUkZExQiRbeU8XUIHm3ZeLfW_rsEWm6Ul1F5uVFe7pTHyPVucTdb43wf-HMcgast4BBxPxZScKFU_gPUVYRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888044701</pqid></control><display><type>article</type><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</creator><creatorcontrib>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</creatorcontrib><description>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2681841</identifier><identifier>PMID: 28320663</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; classification ; Constraints ; Dictionaries ; Face ; Face recognition ; Facial recognition technology ; group constraints ; Group theory ; Learning ; Lighting ; Occlusion ; Optimization ; Regularization ; Robustness ; Robustness (mathematics) ; Sparse representation ; Training ; weights learning</subject><ispartof>IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2408-2423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</citedby><cites>FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</cites><orcidid>0000-0001-6017-0552 ; 0000-0002-6705-3831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7876799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7876799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28320663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Wang, Wanliang</creatorcontrib><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</description><subject>Algorithms</subject><subject>classification</subject><subject>Constraints</subject><subject>Dictionaries</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>group constraints</subject><subject>Group theory</subject><subject>Learning</subject><subject>Lighting</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Sparse representation</subject><subject>Training</subject><subject>weights learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQh4MoWh93QZAFL162ZnazeRxL8VEoKGrpcUnTSU1pd9dkV_C_N7W1B08zMN9vmPkIuQTaB6Dq7n300s8oiH7GJUgGB6QHikFKKcsOY08LkQpg6oSchrCkFFgB_JicZDLPKOd5j0xGLXrdui9MXjEd1lVovXYVzpNHX3dN8tZoHzB50GYDmHpRudbVVTJ17UcymOvmNzpFt_hoQzJG7StXLc7JkdWrgBe7ekYmD_fvw6d0_Pw4Gg7GqcmZaNOMIeMM0eZgjNWATFttZ9TOijmN1ypQBqnhUgg-45Ypoa2QVqiYKwwU-Rm53e5tfP3ZYWjLtQsGVytdYd2FEqRQ8U2R5xG9-Ycu685X8bpISUkZExQiRbeU8XUIHm3ZeLfW_rsEWm6Ul1F5uVFe7pTHyPVucTdb43wf-HMcgast4BBxPxZScKFU_gPUVYRi</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zheng, Jianwei</creator><creator>Yang, Ping</creator><creator>Chen, Shengyong</creator><creator>Shen, Guojiang</creator><creator>Wang, Wanliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-6705-3831</orcidid></search><sort><creationdate>20170501</creationdate><title>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</title><author>Zheng, Jianwei ; Yang, Ping ; Chen, Shengyong ; Shen, Guojiang ; Wang, Wanliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-24e464eef31ccfa1e4afafb0fb5d0001919ce0c68776b6f497af78f794e45c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>Constraints</topic><topic>Dictionaries</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>group constraints</topic><topic>Group theory</topic><topic>Learning</topic><topic>Lighting</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Sparse representation</topic><topic>Training</topic><topic>weights learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianwei</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Shen, Guojiang</creatorcontrib><creatorcontrib>Wang, Wanliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Jianwei</au><au>Yang, Ping</au><au>Chen, Shengyong</au><au>Shen, Guojiang</au><au>Wang, Wanliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>2408</spage><epage>2423</epage><pages>2408-2423</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we consider the robust face recognition problem via iterative re-constrained group sparse classifier (IRGSC) with adaptive weights learning. Specifically, we propose a group sparse representation classification (GSRC) approach in which weighted features and groups are collaboratively adopted to encode more structure information and discriminative information than other regression based methods. In addition, we derive an efficient algorithm to optimize the proposed objective function, and theoretically prove the convergence. There are several appealing aspects associated with IRGSC. First, adaptively learned weights can be seamlessly incorporated into the GSRC framework. This integrates the locality structure of the data and validity information of the features into l 2,p -norm regularization to form a unified formulation. Second, IRGSC is very flexible to different size of training set as well as feature dimension thanks to the l 2,p -norm regularization. Third, the derived solution is proved to be a stationary point (globally optimal if p ≥ 1). Comprehensive experiments on representative data sets demonstrate that IRGSC is a robust discriminative classifier which significantly improves the performance and efficiency compared with the state-of-the-art methods in dealing with face occlusion, corruption, and illumination changes, and so on.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28320663</pmid><doi>10.1109/TIP.2017.2681841</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6017-0552</orcidid><orcidid>https://orcid.org/0000-0002-6705-3831</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2408-2423
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_28320663
source IEEE Electronic Library (IEL)
subjects Algorithms
classification
Constraints
Dictionaries
Face
Face recognition
Facial recognition technology
group constraints
Group theory
Learning
Lighting
Occlusion
Optimization
Regularization
Robustness
Robustness (mathematics)
Sparse representation
Training
weights learning
title Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Re-Constrained%20Group%20Sparse%20Face%20Recognition%20With%20Adaptive%20Weights%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zheng,%20Jianwei&rft.date=2017-05-01&rft.volume=26&rft.issue=5&rft.spage=2408&rft.epage=2423&rft.pages=2408-2423&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2681841&rft_dat=%3Cproquest_RIE%3E1879663733%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888044701&rft_id=info:pmid/28320663&rft_ieee_id=7876799&rfr_iscdi=true