SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake
Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochon...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2017-05, Vol.24 (5), p.761 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 761 |
container_title | Cell death and differentiation |
container_volume | 24 |
creator | Honrath, Birgit Matschke, Lina Meyer, Tammo Magerhans, Lena Perocchi, Fabiana Ganjam, Goutham K Zischka, Hans Krasel, Cornelius Gerding, Albert Bakker, Barbara M Bünemann, Moritz Strack, Stefan Decher, Niels Culmsee, Carsten Dolga, Amalia M |
description | Mitochondrial calcium ([Ca
]
) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca
]
uptake upon SK channel activation as detected by time lapse mitochondrial Ca
measurements with the Ca
-binding mitochondria-targeted aequorin and FRET-based [Ca
]
probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca
]
uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. |
doi_str_mv | 10.1038/cdd.2017.2 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28282037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28282037</sourcerecordid><originalsourceid>FETCH-pubmed_primary_282820373</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC20E9OSdEzMjA01zNiYuA0NDE30zU1MTDmYOAqLs4yMDAwM7c0Y2fgMLIAQgNjc04Gv2BvI4XkjMS8vNScYoWi1PTSnMSSVIXczJL85Iz8vJSizMQcoHBxQWZRYklmfp5CYl4KmqxzooKRtkJpQUlidioPA2taYk5xKi-U5maQc3MNcfbQLShNyk1NiS8oysxNLKqMhznAmKACAIhfP4Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</creator><creatorcontrib>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</creatorcontrib><description>Mitochondrial calcium ([Ca
]
) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca
]
uptake upon SK channel activation as detected by time lapse mitochondrial Ca
measurements with the Ca
-binding mitochondria-targeted aequorin and FRET-based [Ca
]
probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca
]
uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</description><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2017.2</identifier><identifier>PMID: 28282037</identifier><language>eng</language><publisher>England</publisher><subject>Aequorin - genetics ; Aequorin - metabolism ; Animals ; Apamin - pharmacology ; Calcium - metabolism ; Cell Death - drug effects ; Cell Line ; Cell Survival - drug effects ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Fluorescence Resonance Energy Transfer ; Gene Expression Regulation ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Indoles - pharmacology ; Membrane Potential, Mitochondrial - drug effects ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Oxidative Phosphorylation - drug effects ; Oximes - pharmacology ; Patch-Clamp Techniques ; Primary Cell Culture ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Rats ; Signal Transduction ; Small-Conductance Calcium-Activated Potassium Channels - agonists ; Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors ; Small-Conductance Calcium-Activated Potassium Channels - genetics ; Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><ispartof>Cell death and differentiation, 2017-05, Vol.24 (5), p.761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28282037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honrath, Birgit</creatorcontrib><creatorcontrib>Matschke, Lina</creatorcontrib><creatorcontrib>Meyer, Tammo</creatorcontrib><creatorcontrib>Magerhans, Lena</creatorcontrib><creatorcontrib>Perocchi, Fabiana</creatorcontrib><creatorcontrib>Ganjam, Goutham K</creatorcontrib><creatorcontrib>Zischka, Hans</creatorcontrib><creatorcontrib>Krasel, Cornelius</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Strack, Stefan</creatorcontrib><creatorcontrib>Decher, Niels</creatorcontrib><creatorcontrib>Culmsee, Carsten</creatorcontrib><creatorcontrib>Dolga, Amalia M</creatorcontrib><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><description>Mitochondrial calcium ([Ca
]
) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca
]
uptake upon SK channel activation as detected by time lapse mitochondrial Ca
measurements with the Ca
-binding mitochondria-targeted aequorin and FRET-based [Ca
]
probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca
]
uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</description><subject>Aequorin - genetics</subject><subject>Aequorin - metabolism</subject><subject>Animals</subject><subject>Apamin - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Indoles - pharmacology</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oximes - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Primary Cell Culture</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Rats</subject><subject>Signal Transduction</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - agonists</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - genetics</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpjYBAyNNAzNDC20E9OSdEzMjA01zNiYuA0NDE30zU1MTDmYOAqLs4yMDAwM7c0Y2fgMLIAQgNjc04Gv2BvI4XkjMS8vNScYoWi1PTSnMSSVIXczJL85Iz8vJSizMQcoHBxQWZRYklmfp5CYl4KmqxzooKRtkJpQUlidioPA2taYk5xKi-U5maQc3MNcfbQLShNyk1NiS8oysxNLKqMhznAmKACAIhfP4Q</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Honrath, Birgit</creator><creator>Matschke, Lina</creator><creator>Meyer, Tammo</creator><creator>Magerhans, Lena</creator><creator>Perocchi, Fabiana</creator><creator>Ganjam, Goutham K</creator><creator>Zischka, Hans</creator><creator>Krasel, Cornelius</creator><creator>Gerding, Albert</creator><creator>Bakker, Barbara M</creator><creator>Bünemann, Moritz</creator><creator>Strack, Stefan</creator><creator>Decher, Niels</creator><creator>Culmsee, Carsten</creator><creator>Dolga, Amalia M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201705</creationdate><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><author>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_282820373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aequorin - genetics</topic><topic>Aequorin - metabolism</topic><topic>Animals</topic><topic>Apamin - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Indoles - pharmacology</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oximes - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Primary Cell Culture</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Rats</topic><topic>Signal Transduction</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - agonists</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - genetics</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honrath, Birgit</creatorcontrib><creatorcontrib>Matschke, Lina</creatorcontrib><creatorcontrib>Meyer, Tammo</creatorcontrib><creatorcontrib>Magerhans, Lena</creatorcontrib><creatorcontrib>Perocchi, Fabiana</creatorcontrib><creatorcontrib>Ganjam, Goutham K</creatorcontrib><creatorcontrib>Zischka, Hans</creatorcontrib><creatorcontrib>Krasel, Cornelius</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Strack, Stefan</creatorcontrib><creatorcontrib>Decher, Niels</creatorcontrib><creatorcontrib>Culmsee, Carsten</creatorcontrib><creatorcontrib>Dolga, Amalia M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honrath, Birgit</au><au>Matschke, Lina</au><au>Meyer, Tammo</au><au>Magerhans, Lena</au><au>Perocchi, Fabiana</au><au>Ganjam, Goutham K</au><au>Zischka, Hans</au><au>Krasel, Cornelius</au><au>Gerding, Albert</au><au>Bakker, Barbara M</au><au>Bünemann, Moritz</au><au>Strack, Stefan</au><au>Decher, Niels</au><au>Culmsee, Carsten</au><au>Dolga, Amalia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</atitle><jtitle>Cell death and differentiation</jtitle><addtitle>Cell Death Differ</addtitle><date>2017-05</date><risdate>2017</risdate><volume>24</volume><issue>5</issue><spage>761</spage><pages>761-</pages><eissn>1476-5403</eissn><abstract>Mitochondrial calcium ([Ca
]
) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca
]
uptake upon SK channel activation as detected by time lapse mitochondrial Ca
measurements with the Ca
-binding mitochondria-targeted aequorin and FRET-based [Ca
]
probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca
]
uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</abstract><cop>England</cop><pmid>28282037</pmid><doi>10.1038/cdd.2017.2</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1476-5403 |
ispartof | Cell death and differentiation, 2017-05, Vol.24 (5), p.761 |
issn | 1476-5403 |
language | eng |
recordid | cdi_pubmed_primary_28282037 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Aequorin - genetics Aequorin - metabolism Animals Apamin - pharmacology Calcium - metabolism Cell Death - drug effects Cell Line Cell Survival - drug effects Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Fluorescence Resonance Energy Transfer Gene Expression Regulation Genes, Reporter Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Indoles - pharmacology Membrane Potential, Mitochondrial - drug effects Mice Mitochondria - drug effects Mitochondria - metabolism Neurons - cytology Neurons - drug effects Neurons - metabolism Oxidative Phosphorylation - drug effects Oximes - pharmacology Patch-Clamp Techniques Primary Cell Culture Pyrazoles - pharmacology Pyrimidines - pharmacology Rats Signal Transduction Small-Conductance Calcium-Activated Potassium Channels - agonists Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors Small-Conductance Calcium-Activated Potassium Channels - genetics Small-Conductance Calcium-Activated Potassium Channels - metabolism |
title | SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SK2%20channels%20regulate%20mitochondrial%20respiration%20and%20mitochondrial%20Ca%202+%20uptake&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Honrath,%20Birgit&rft.date=2017-05&rft.volume=24&rft.issue=5&rft.spage=761&rft.pages=761-&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2017.2&rft_dat=%3Cpubmed%3E28282037%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28282037&rfr_iscdi=true |