SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake

Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2017-05, Vol.24 (5), p.761
Hauptverfasser: Honrath, Birgit, Matschke, Lina, Meyer, Tammo, Magerhans, Lena, Perocchi, Fabiana, Ganjam, Goutham K, Zischka, Hans, Krasel, Cornelius, Gerding, Albert, Bakker, Barbara M, Bünemann, Moritz, Strack, Stefan, Decher, Niels, Culmsee, Carsten, Dolga, Amalia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 761
container_title Cell death and differentiation
container_volume 24
creator Honrath, Birgit
Matschke, Lina
Meyer, Tammo
Magerhans, Lena
Perocchi, Fabiana
Ganjam, Goutham K
Zischka, Hans
Krasel, Cornelius
Gerding, Albert
Bakker, Barbara M
Bünemann, Moritz
Strack, Stefan
Decher, Niels
Culmsee, Carsten
Dolga, Amalia M
description Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca ] uptake upon SK channel activation as detected by time lapse mitochondrial Ca measurements with the Ca -binding mitochondria-targeted aequorin and FRET-based [Ca ] probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca ] uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.
doi_str_mv 10.1038/cdd.2017.2
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28282037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28282037</sourcerecordid><originalsourceid>FETCH-pubmed_primary_282820373</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC20E9OSdEzMjA01zNiYuA0NDE30zU1MTDmYOAqLs4yMDAwM7c0Y2fgMLIAQgNjc04Gv2BvI4XkjMS8vNScYoWi1PTSnMSSVIXczJL85Iz8vJSizMQcoHBxQWZRYklmfp5CYl4KmqxzooKRtkJpQUlidioPA2taYk5xKi-U5maQc3MNcfbQLShNyk1NiS8oysxNLKqMhznAmKACAIhfP4Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</creator><creatorcontrib>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</creatorcontrib><description>Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca ] uptake upon SK channel activation as detected by time lapse mitochondrial Ca measurements with the Ca -binding mitochondria-targeted aequorin and FRET-based [Ca ] probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca ] uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</description><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2017.2</identifier><identifier>PMID: 28282037</identifier><language>eng</language><publisher>England</publisher><subject>Aequorin - genetics ; Aequorin - metabolism ; Animals ; Apamin - pharmacology ; Calcium - metabolism ; Cell Death - drug effects ; Cell Line ; Cell Survival - drug effects ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Fluorescence Resonance Energy Transfer ; Gene Expression Regulation ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Indoles - pharmacology ; Membrane Potential, Mitochondrial - drug effects ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Oxidative Phosphorylation - drug effects ; Oximes - pharmacology ; Patch-Clamp Techniques ; Primary Cell Culture ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Rats ; Signal Transduction ; Small-Conductance Calcium-Activated Potassium Channels - agonists ; Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors ; Small-Conductance Calcium-Activated Potassium Channels - genetics ; Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><ispartof>Cell death and differentiation, 2017-05, Vol.24 (5), p.761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28282037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honrath, Birgit</creatorcontrib><creatorcontrib>Matschke, Lina</creatorcontrib><creatorcontrib>Meyer, Tammo</creatorcontrib><creatorcontrib>Magerhans, Lena</creatorcontrib><creatorcontrib>Perocchi, Fabiana</creatorcontrib><creatorcontrib>Ganjam, Goutham K</creatorcontrib><creatorcontrib>Zischka, Hans</creatorcontrib><creatorcontrib>Krasel, Cornelius</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Strack, Stefan</creatorcontrib><creatorcontrib>Decher, Niels</creatorcontrib><creatorcontrib>Culmsee, Carsten</creatorcontrib><creatorcontrib>Dolga, Amalia M</creatorcontrib><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><description>Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca ] uptake upon SK channel activation as detected by time lapse mitochondrial Ca measurements with the Ca -binding mitochondria-targeted aequorin and FRET-based [Ca ] probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca ] uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</description><subject>Aequorin - genetics</subject><subject>Aequorin - metabolism</subject><subject>Animals</subject><subject>Apamin - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Indoles - pharmacology</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oximes - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Primary Cell Culture</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Rats</subject><subject>Signal Transduction</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - agonists</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - genetics</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpjYBAyNNAzNDC20E9OSdEzMjA01zNiYuA0NDE30zU1MTDmYOAqLs4yMDAwM7c0Y2fgMLIAQgNjc04Gv2BvI4XkjMS8vNScYoWi1PTSnMSSVIXczJL85Iz8vJSizMQcoHBxQWZRYklmfp5CYl4KmqxzooKRtkJpQUlidioPA2taYk5xKi-U5maQc3MNcfbQLShNyk1NiS8oysxNLKqMhznAmKACAIhfP4Q</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Honrath, Birgit</creator><creator>Matschke, Lina</creator><creator>Meyer, Tammo</creator><creator>Magerhans, Lena</creator><creator>Perocchi, Fabiana</creator><creator>Ganjam, Goutham K</creator><creator>Zischka, Hans</creator><creator>Krasel, Cornelius</creator><creator>Gerding, Albert</creator><creator>Bakker, Barbara M</creator><creator>Bünemann, Moritz</creator><creator>Strack, Stefan</creator><creator>Decher, Niels</creator><creator>Culmsee, Carsten</creator><creator>Dolga, Amalia M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201705</creationdate><title>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</title><author>Honrath, Birgit ; Matschke, Lina ; Meyer, Tammo ; Magerhans, Lena ; Perocchi, Fabiana ; Ganjam, Goutham K ; Zischka, Hans ; Krasel, Cornelius ; Gerding, Albert ; Bakker, Barbara M ; Bünemann, Moritz ; Strack, Stefan ; Decher, Niels ; Culmsee, Carsten ; Dolga, Amalia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_282820373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aequorin - genetics</topic><topic>Aequorin - metabolism</topic><topic>Animals</topic><topic>Apamin - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Indoles - pharmacology</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oximes - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Primary Cell Culture</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Rats</topic><topic>Signal Transduction</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - agonists</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - genetics</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honrath, Birgit</creatorcontrib><creatorcontrib>Matschke, Lina</creatorcontrib><creatorcontrib>Meyer, Tammo</creatorcontrib><creatorcontrib>Magerhans, Lena</creatorcontrib><creatorcontrib>Perocchi, Fabiana</creatorcontrib><creatorcontrib>Ganjam, Goutham K</creatorcontrib><creatorcontrib>Zischka, Hans</creatorcontrib><creatorcontrib>Krasel, Cornelius</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Strack, Stefan</creatorcontrib><creatorcontrib>Decher, Niels</creatorcontrib><creatorcontrib>Culmsee, Carsten</creatorcontrib><creatorcontrib>Dolga, Amalia M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honrath, Birgit</au><au>Matschke, Lina</au><au>Meyer, Tammo</au><au>Magerhans, Lena</au><au>Perocchi, Fabiana</au><au>Ganjam, Goutham K</au><au>Zischka, Hans</au><au>Krasel, Cornelius</au><au>Gerding, Albert</au><au>Bakker, Barbara M</au><au>Bünemann, Moritz</au><au>Strack, Stefan</au><au>Decher, Niels</au><au>Culmsee, Carsten</au><au>Dolga, Amalia M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake</atitle><jtitle>Cell death and differentiation</jtitle><addtitle>Cell Death Differ</addtitle><date>2017-05</date><risdate>2017</risdate><volume>24</volume><issue>5</issue><spage>761</spage><pages>761-</pages><eissn>1476-5403</eissn><abstract>Mitochondrial calcium ([Ca ] ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca ] uptake upon SK channel activation as detected by time lapse mitochondrial Ca measurements with the Ca -binding mitochondria-targeted aequorin and FRET-based [Ca ] probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca ] uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.</abstract><cop>England</cop><pmid>28282037</pmid><doi>10.1038/cdd.2017.2</doi></addata></record>
fulltext fulltext
identifier EISSN: 1476-5403
ispartof Cell death and differentiation, 2017-05, Vol.24 (5), p.761
issn 1476-5403
language eng
recordid cdi_pubmed_primary_28282037
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Aequorin - genetics
Aequorin - metabolism
Animals
Apamin - pharmacology
Calcium - metabolism
Cell Death - drug effects
Cell Line
Cell Survival - drug effects
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Fluorescence Resonance Energy Transfer
Gene Expression Regulation
Genes, Reporter
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Indoles - pharmacology
Membrane Potential, Mitochondrial - drug effects
Mice
Mitochondria - drug effects
Mitochondria - metabolism
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Oxidative Phosphorylation - drug effects
Oximes - pharmacology
Patch-Clamp Techniques
Primary Cell Culture
Pyrazoles - pharmacology
Pyrimidines - pharmacology
Rats
Signal Transduction
Small-Conductance Calcium-Activated Potassium Channels - agonists
Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors
Small-Conductance Calcium-Activated Potassium Channels - genetics
Small-Conductance Calcium-Activated Potassium Channels - metabolism
title SK2 channels regulate mitochondrial respiration and mitochondrial Ca 2+ uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SK2%20channels%20regulate%20mitochondrial%20respiration%20and%20mitochondrial%20Ca%202+%20uptake&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Honrath,%20Birgit&rft.date=2017-05&rft.volume=24&rft.issue=5&rft.spage=761&rft.pages=761-&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2017.2&rft_dat=%3Cpubmed%3E28282037%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28282037&rfr_iscdi=true