Subdiffusion–absorption process in a system consisting of two different media

Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-02, Vol.146 (8), p.084114-084114
1. Verfasser: Kosztołowicz, Tadeusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084114
container_issue 8
container_start_page 084114
container_title The Journal of chemical physics
container_volume 146
creator Kosztołowicz, Tadeusz
description Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives ∂ α 1 P ( 0 + , t ) / ∂ t α 1 = ( D 1 / D 2 ) ∂ α 2 P ( 0 − , t ) / ∂ t α 2 , where the subdiffusion parameters α 1 , D 1 and α 2 , D 2 are defined in the regions x < 0 and x > 0 , respectively.
doi_str_mv 10.1063/1.4976843
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28249429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124553911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM11MllK8QaFLuw-ZNJEUtpJnTODdOc7-IY-iTO0unDh6hD48nPOj9A5JWNKcn5Lx0KrvBD8AA0pKXSmck0O0ZAQRjOdk3yATgCWhBCqmDhGA1YwoQXTQzR7actFDKGFmKqvj09bQqo3TffAmzo5D4BjhS2GLTR-jV2qIEITq1ecAm7eE-4_-9pXDV77RbSn6CjYFfiz_Ryh-cP9fPKUTWePz5O7aeZ4wZvMM1tqL70tJVPMeqtskJy7XBXcaU4WlkubcyZoyTtng2A8SOGE1opayUfoahfbLfnWemjMOoLzq5WtfGrB0EJxxZggPb38Q5epratuOcMoE1JyTWmnrnfK1Qmg9sFs6ri29dZQYvqSDTX7kjt7sU9sy-7oX_nTagdudgBcbGxf5j9p33JwhIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124553911</pqid></control><display><type>article</type><title>Subdiffusion–absorption process in a system consisting of two different media</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kosztołowicz, Tadeusz</creator><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><description>Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives ∂ α 1 P ( 0 + , t ) / ∂ t α 1 = ( D 1 / D 2 ) ∂ α 2 P ( 0 − , t ) / ∂ t α 2 , where the subdiffusion parameters α 1 , D 1 and α 2 , D 2 are defined in the regions x &lt; 0 and x &gt; 0 , respectively.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4976843</identifier><identifier>PMID: 28249429</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Boundary conditions ; Mathematical analysis ; Media ; Parameters</subject><ispartof>The Journal of chemical physics, 2017-02, Vol.146 (8), p.084114-084114</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</citedby><cites>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4976843$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28249429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><title>Subdiffusion–absorption process in a system consisting of two different media</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives ∂ α 1 P ( 0 + , t ) / ∂ t α 1 = ( D 1 / D 2 ) ∂ α 2 P ( 0 − , t ) / ∂ t α 2 , where the subdiffusion parameters α 1 , D 1 and α 2 , D 2 are defined in the regions x &lt; 0 and x &gt; 0 , respectively.</description><subject>Boundary conditions</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Parameters</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM11MllK8QaFLuw-ZNJEUtpJnTODdOc7-IY-iTO0unDh6hD48nPOj9A5JWNKcn5Lx0KrvBD8AA0pKXSmck0O0ZAQRjOdk3yATgCWhBCqmDhGA1YwoQXTQzR7actFDKGFmKqvj09bQqo3TffAmzo5D4BjhS2GLTR-jV2qIEITq1ecAm7eE-4_-9pXDV77RbSn6CjYFfiz_Ryh-cP9fPKUTWePz5O7aeZ4wZvMM1tqL70tJVPMeqtskJy7XBXcaU4WlkubcyZoyTtng2A8SOGE1opayUfoahfbLfnWemjMOoLzq5WtfGrB0EJxxZggPb38Q5epratuOcMoE1JyTWmnrnfK1Qmg9sFs6ri29dZQYvqSDTX7kjt7sU9sy-7oX_nTagdudgBcbGxf5j9p33JwhIk</recordid><startdate>20170228</startdate><enddate>20170228</enddate><creator>Kosztołowicz, Tadeusz</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20170228</creationdate><title>Subdiffusion–absorption process in a system consisting of two different media</title><author>Kosztołowicz, Tadeusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosztołowicz, Tadeusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subdiffusion–absorption process in a system consisting of two different media</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-02-28</date><risdate>2017</risdate><volume>146</volume><issue>8</issue><spage>084114</spage><epage>084114</epage><pages>084114-084114</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives ∂ α 1 P ( 0 + , t ) / ∂ t α 1 = ( D 1 / D 2 ) ∂ α 2 P ( 0 − , t ) / ∂ t α 2 , where the subdiffusion parameters α 1 , D 1 and α 2 , D 2 are defined in the regions x &lt; 0 and x &gt; 0 , respectively.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28249429</pmid><doi>10.1063/1.4976843</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-02, Vol.146 (8), p.084114-084114
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_28249429
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Mathematical analysis
Media
Parameters
title Subdiffusion–absorption process in a system consisting of two different media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subdiffusion%E2%80%93absorption%20process%20in%20a%20system%20consisting%20of%20two%20different%20media&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koszto%C5%82owicz,%20Tadeusz&rft.date=2017-02-28&rft.volume=146&rft.issue=8&rft.spage=084114&rft.epage=084114&rft.pages=084114-084114&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4976843&rft_dat=%3Cproquest_pubme%3E2124553911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124553911&rft_id=info:pmid/28249429&rfr_iscdi=true