Subdiffusion–absorption process in a system consisting of two different media
Subdiffusion with reaction A + B → B is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both me...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2017-02, Vol.146 (8), p.084114-084114 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084114 |
---|---|
container_issue | 8 |
container_start_page | 084114 |
container_title | The Journal of chemical physics |
container_volume | 146 |
creator | Kosztołowicz, Tadeusz |
description | Subdiffusion with reaction
A
+
B
→
B
is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives
∂
α
1
P
(
0
+
,
t
)
/
∂
t
α
1
=
(
D
1
/
D
2
)
∂
α
2
P
(
0
−
,
t
)
/
∂
t
α
2
, where the subdiffusion parameters
α
1
, D
1 and
α
2
, D
2 are defined in the regions
x
<
0
and
x
>
0
, respectively. |
doi_str_mv | 10.1063/1.4976843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28249429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124553911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM11MllK8QaFLuw-ZNJEUtpJnTODdOc7-IY-iTO0unDh6hD48nPOj9A5JWNKcn5Lx0KrvBD8AA0pKXSmck0O0ZAQRjOdk3yATgCWhBCqmDhGA1YwoQXTQzR7actFDKGFmKqvj09bQqo3TffAmzo5D4BjhS2GLTR-jV2qIEITq1ecAm7eE-4_-9pXDV77RbSn6CjYFfiz_Ryh-cP9fPKUTWePz5O7aeZ4wZvMM1tqL70tJVPMeqtskJy7XBXcaU4WlkubcyZoyTtng2A8SOGE1opayUfoahfbLfnWemjMOoLzq5WtfGrB0EJxxZggPb38Q5epratuOcMoE1JyTWmnrnfK1Qmg9sFs6ri29dZQYvqSDTX7kjt7sU9sy-7oX_nTagdudgBcbGxf5j9p33JwhIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124553911</pqid></control><display><type>article</type><title>Subdiffusion–absorption process in a system consisting of two different media</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kosztołowicz, Tadeusz</creator><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><description>Subdiffusion with reaction
A
+
B
→
B
is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives
∂
α
1
P
(
0
+
,
t
)
/
∂
t
α
1
=
(
D
1
/
D
2
)
∂
α
2
P
(
0
−
,
t
)
/
∂
t
α
2
, where the subdiffusion parameters
α
1
, D
1 and
α
2
, D
2 are defined in the regions
x
<
0
and
x
>
0
, respectively.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4976843</identifier><identifier>PMID: 28249429</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Boundary conditions ; Mathematical analysis ; Media ; Parameters</subject><ispartof>The Journal of chemical physics, 2017-02, Vol.146 (8), p.084114-084114</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</citedby><cites>FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4976843$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28249429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><title>Subdiffusion–absorption process in a system consisting of two different media</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Subdiffusion with reaction
A
+
B
→
B
is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives
∂
α
1
P
(
0
+
,
t
)
/
∂
t
α
1
=
(
D
1
/
D
2
)
∂
α
2
P
(
0
−
,
t
)
/
∂
t
α
2
, where the subdiffusion parameters
α
1
, D
1 and
α
2
, D
2 are defined in the regions
x
<
0
and
x
>
0
, respectively.</description><subject>Boundary conditions</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Parameters</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM11MllK8QaFLuw-ZNJEUtpJnTODdOc7-IY-iTO0unDh6hD48nPOj9A5JWNKcn5Lx0KrvBD8AA0pKXSmck0O0ZAQRjOdk3yATgCWhBCqmDhGA1YwoQXTQzR7actFDKGFmKqvj09bQqo3TffAmzo5D4BjhS2GLTR-jV2qIEITq1ecAm7eE-4_-9pXDV77RbSn6CjYFfiz_Ryh-cP9fPKUTWePz5O7aeZ4wZvMM1tqL70tJVPMeqtskJy7XBXcaU4WlkubcyZoyTtng2A8SOGE1opayUfoahfbLfnWemjMOoLzq5WtfGrB0EJxxZggPb38Q5epratuOcMoE1JyTWmnrnfK1Qmg9sFs6ri29dZQYvqSDTX7kjt7sU9sy-7oX_nTagdudgBcbGxf5j9p33JwhIk</recordid><startdate>20170228</startdate><enddate>20170228</enddate><creator>Kosztołowicz, Tadeusz</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20170228</creationdate><title>Subdiffusion–absorption process in a system consisting of two different media</title><author>Kosztołowicz, Tadeusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e2ab9e5eab5272aea7af533c6783c930da35a63241b39e5af423f54c49971a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosztołowicz, Tadeusz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosztołowicz, Tadeusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subdiffusion–absorption process in a system consisting of two different media</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-02-28</date><risdate>2017</risdate><volume>146</volume><issue>8</issue><spage>084114</spage><epage>084114</epage><pages>084114-084114</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Subdiffusion with reaction
A
+
B
→
B
is considered in a system which consists of two homogeneous media joined together; the A particles are mobile, whereas B are static. Subdiffusion and reaction parameters, which are assumed to be independent of time and space variables, can be different in both media. Particles A move freely across the border between the media. In each part of the system, the process is described by the subdiffusion–reaction equations with fractional time derivative. By means of the method presented in this paper, we derive both the fundamental solutions (the Green’s functions) P(x, t) to the subdiffusion–reaction equations and the boundary conditions at the border between the media. One of the conditions demands the continuity of a flux and the other one contains the Riemann–Liouville fractional time derivatives
∂
α
1
P
(
0
+
,
t
)
/
∂
t
α
1
=
(
D
1
/
D
2
)
∂
α
2
P
(
0
−
,
t
)
/
∂
t
α
2
, where the subdiffusion parameters
α
1
, D
1 and
α
2
, D
2 are defined in the regions
x
<
0
and
x
>
0
, respectively.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28249429</pmid><doi>10.1063/1.4976843</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2017-02, Vol.146 (8), p.084114-084114 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_28249429 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary conditions Mathematical analysis Media Parameters |
title | Subdiffusion–absorption process in a system consisting of two different media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subdiffusion%E2%80%93absorption%20process%20in%20a%20system%20consisting%20of%20two%20different%20media&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koszto%C5%82owicz,%20Tadeusz&rft.date=2017-02-28&rft.volume=146&rft.issue=8&rft.spage=084114&rft.epage=084114&rft.pages=084114-084114&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4976843&rft_dat=%3Cproquest_pubme%3E2124553911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124553911&rft_id=info:pmid/28249429&rfr_iscdi=true |