A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems
This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2018-03, Vol.22 (2), p.429-441 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | 2 |
container_start_page | 429 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 22 |
creator | Bote, Jose Manuel Recas, Joaquin Rincon, Francisco Atienza, David Hermida, Roman |
description | This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in runtime to a wide range of modes and sampling rates, from a ultralow-power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete high-accuracy delineation mode, in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in the case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography Committee in the high-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultralow-power 8-MHz TI MSP430 series microcontroller ranges from 0.2% to 8.5% according to the mode used. |
doi_str_mv | 10.1109/JBHI.2017.2671443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28222005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7858735</ieee_id><sourcerecordid>1870987032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f6f480ead7a06d8ba9d42837c3824af3c34e75387d660282d6755ce2dea5365e3</originalsourceid><addsrcrecordid>eNpdkNtKAzEQhoMoKtUHEEEC3nizNYfNYS9rrScq4uk6pJtZXdltarKL9u1NafXCgTAh-f5h-BA6omRIKSnO7y5uboeMUDVkUtE851ton1GpM8aI3v690yLfQ4cxfpBUOj0VchftMc0SRcQ-ehzhe-_6xgY89V_Z2LeLBr7rbokn42t8CU09B9vVfo5HzZsPdffe4soH_AS2yV7qFvCknYFz4PDzMnbQxgO0U9kmwuGmD9Dr1eRlfJNNH65vx6NpVvKCdVklq1wTsE5ZIp2e2cLlTHNVcs1yW_GS56AE18pJSdK-TiohSmAOrOBSAB-gs_XcRfCfPcTOtHUsoWnsHHwfDdWKFOlwltDTf-iH78M8bWcYVbngJClLFF1TZfAxBqjMItStDUtDiVkpNyvlZqXcbJSnzMlmcj9rwf0lfgUn4HgN1ADw96200IoL_gOMgYJH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174530208</pqid></control><display><type>article</type><title>A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Bote, Jose Manuel ; Recas, Joaquin ; Rincon, Francisco ; Atienza, David ; Hermida, Roman</creator><creatorcontrib>Bote, Jose Manuel ; Recas, Joaquin ; Rincon, Francisco ; Atienza, David ; Hermida, Roman</creatorcontrib><description>This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in runtime to a wide range of modes and sampling rates, from a ultralow-power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete high-accuracy delineation mode, in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in the case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography Committee in the high-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultralow-power 8-MHz TI MSP430 series microcontroller ranges from 0.2% to 8.5% according to the mode used.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2671443</identifier><identifier>PMID: 28222005</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Arrhythmia ; Biomedical monitoring ; Cardiac arrhythmia ; Complexity ; Computer applications ; Data bases ; Delineation ; EKG ; Electrocardiogram ; Electrocardiography ; Electrocardiography - methods ; Embedded systems ; energy-constrained systems ; Finite impulse response filters ; Heart rate ; Humans ; Microcontrollers ; Modular design ; Modular systems ; Monitoring ; P waves ; Real time ; Real-time systems ; Signal Processing, Computer-Assisted ; Tolerances ; Wearable Electronic Devices ; wearable medical devices</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-03, Vol.22 (2), p.429-441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f6f480ead7a06d8ba9d42837c3824af3c34e75387d660282d6755ce2dea5365e3</citedby><cites>FETCH-LOGICAL-c392t-f6f480ead7a06d8ba9d42837c3824af3c34e75387d660282d6755ce2dea5365e3</cites><orcidid>0000-0001-9935-7496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7858735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7858735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28222005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bote, Jose Manuel</creatorcontrib><creatorcontrib>Recas, Joaquin</creatorcontrib><creatorcontrib>Rincon, Francisco</creatorcontrib><creatorcontrib>Atienza, David</creatorcontrib><creatorcontrib>Hermida, Roman</creatorcontrib><title>A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in runtime to a wide range of modes and sampling rates, from a ultralow-power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete high-accuracy delineation mode, in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in the case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography Committee in the high-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultralow-power 8-MHz TI MSP430 series microcontroller ranges from 0.2% to 8.5% according to the mode used.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Biomedical monitoring</subject><subject>Cardiac arrhythmia</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Data bases</subject><subject>Delineation</subject><subject>EKG</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Electrocardiography - methods</subject><subject>Embedded systems</subject><subject>energy-constrained systems</subject><subject>Finite impulse response filters</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Microcontrollers</subject><subject>Modular design</subject><subject>Modular systems</subject><subject>Monitoring</subject><subject>P waves</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Tolerances</subject><subject>Wearable Electronic Devices</subject><subject>wearable medical devices</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkNtKAzEQhoMoKtUHEEEC3nizNYfNYS9rrScq4uk6pJtZXdltarKL9u1NafXCgTAh-f5h-BA6omRIKSnO7y5uboeMUDVkUtE851ton1GpM8aI3v690yLfQ4cxfpBUOj0VchftMc0SRcQ-ehzhe-_6xgY89V_Z2LeLBr7rbokn42t8CU09B9vVfo5HzZsPdffe4soH_AS2yV7qFvCknYFz4PDzMnbQxgO0U9kmwuGmD9Dr1eRlfJNNH65vx6NpVvKCdVklq1wTsE5ZIp2e2cLlTHNVcs1yW_GS56AE18pJSdK-TiohSmAOrOBSAB-gs_XcRfCfPcTOtHUsoWnsHHwfDdWKFOlwltDTf-iH78M8bWcYVbngJClLFF1TZfAxBqjMItStDUtDiVkpNyvlZqXcbJSnzMlmcj9rwf0lfgUn4HgN1ADw96200IoL_gOMgYJH</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Bote, Jose Manuel</creator><creator>Recas, Joaquin</creator><creator>Rincon, Francisco</creator><creator>Atienza, David</creator><creator>Hermida, Roman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9935-7496</orcidid></search><sort><creationdate>201803</creationdate><title>A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems</title><author>Bote, Jose Manuel ; Recas, Joaquin ; Rincon, Francisco ; Atienza, David ; Hermida, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f6f480ead7a06d8ba9d42837c3824af3c34e75387d660282d6755ce2dea5365e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Biomedical monitoring</topic><topic>Cardiac arrhythmia</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Data bases</topic><topic>Delineation</topic><topic>EKG</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Electrocardiography - methods</topic><topic>Embedded systems</topic><topic>energy-constrained systems</topic><topic>Finite impulse response filters</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Microcontrollers</topic><topic>Modular design</topic><topic>Modular systems</topic><topic>Monitoring</topic><topic>P waves</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Tolerances</topic><topic>Wearable Electronic Devices</topic><topic>wearable medical devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bote, Jose Manuel</creatorcontrib><creatorcontrib>Recas, Joaquin</creatorcontrib><creatorcontrib>Rincon, Francisco</creatorcontrib><creatorcontrib>Atienza, David</creatorcontrib><creatorcontrib>Hermida, Roman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bote, Jose Manuel</au><au>Recas, Joaquin</au><au>Rincon, Francisco</au><au>Atienza, David</au><au>Hermida, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-03</date><risdate>2018</risdate><volume>22</volume><issue>2</issue><spage>429</spage><epage>441</epage><pages>429-441</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This work presents a new modular and low-complexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets, and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform real-time delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in runtime to a wide range of modes and sampling rates, from a ultralow-power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete high-accuracy delineation mode, in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in the case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography Committee in the high-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultralow-power 8-MHz TI MSP430 series microcontroller ranges from 0.2% to 8.5% according to the mode used.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28222005</pmid><doi>10.1109/JBHI.2017.2671443</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9935-7496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2018-03, Vol.22 (2), p.429-441 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_28222005 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Arrhythmia Biomedical monitoring Cardiac arrhythmia Complexity Computer applications Data bases Delineation EKG Electrocardiogram Electrocardiography Electrocardiography - methods Embedded systems energy-constrained systems Finite impulse response filters Heart rate Humans Microcontrollers Modular design Modular systems Monitoring P waves Real time Real-time systems Signal Processing, Computer-Assisted Tolerances Wearable Electronic Devices wearable medical devices |
title | A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modular%20Low-Complexity%20ECG%20Delineation%20Algorithm%20for%20Real-Time%20Embedded%20Systems&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Bote,%20Jose%20Manuel&rft.date=2018-03&rft.volume=22&rft.issue=2&rft.spage=429&rft.epage=441&rft.pages=429-441&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2671443&rft_dat=%3Cproquest_RIE%3E1870987032%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174530208&rft_id=info:pmid/28222005&rft_ieee_id=7858735&rfr_iscdi=true |