Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2017-03, Vol.38 (3), p.575-585
Hauptverfasser: Specht, Aaron J, Weisskopf, Marc G, Nie, Linda Huiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 3
container_start_page 575
container_title Physiological measurement
container_volume 38
creator Specht, Aaron J
Weisskopf, Marc G
Nie, Linda Huiling
description Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.
doi_str_mv 10.1088/1361-6579/aa5efe
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28169835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865817080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</originalsourceid><addsrcrecordid>eNp1kc9r1UAQxxdR7LN69yR7ETyYdjeb_ZGLIKVVaUGQit6Gye6kTUmycTcpvv_ePF59KOhpYOYz3xm-X8ZeSnEihXOnUhlZGG3rU0RNLT1im0PrMduI2thCKVUdsWc53wkhpSv1U3ZUOmlqp_SGfbu-pZho7jz2fIiB-m684bHlyKeYZmx64j-LhFs-Lw3xBjMFfvn9ywXP2zzTwOfIB8K8JOI9YeDdyJs40nP2pMU-04uHesy-Xpxfn30srj5_-HT2_qrwlVFzUYVaoURfKeuq2vu6Cbp2NsjSBuF10MGWnqTXumy9RuPItOiD0FrIqvKkjtm7ve60NAMFT-OcsIcpdQOmLUTs4O_J2N3CTbwHbaSVpVgF3jwIpPhjoTzD0GVPfY8jxSWDdEY7aYXboWKP-hRzTtQezkgBuzxgZz7szId9HuvKqz_fOyz8DmAFXu-BLk5wF5c0rm7BtFoKyoECbTVMoV25t__g_nv3F-yOo3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865817080</pqid></control><display><type>article</type><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</creator><creatorcontrib>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</creatorcontrib><description>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</description><identifier>ISSN: 0967-3334</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/aa5efe</identifier><identifier>PMID: 28169835</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Bone and Bones - metabolism ; bone lead ; exposure assessment ; lead ; Lead - metabolism ; Limit of Detection ; metals ; Monte Carlo Method ; Spectrometry, X-Ray Emission - instrumentation ; x-ray fluorescence ; XRF</subject><ispartof>Physiological measurement, 2017-03, Vol.38 (3), p.575-585</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</citedby><cites>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6579/aa5efe/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28169835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Specht, Aaron J</creatorcontrib><creatorcontrib>Weisskopf, Marc G</creatorcontrib><creatorcontrib>Nie, Linda Huiling</creatorcontrib><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><title>Physiological measurement</title><addtitle>PM</addtitle><addtitle>Physiol. Meas</addtitle><description>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</description><subject>Bone and Bones - metabolism</subject><subject>bone lead</subject><subject>exposure assessment</subject><subject>lead</subject><subject>Lead - metabolism</subject><subject>Limit of Detection</subject><subject>metals</subject><subject>Monte Carlo Method</subject><subject>Spectrometry, X-Ray Emission - instrumentation</subject><subject>x-ray fluorescence</subject><subject>XRF</subject><issn>0967-3334</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9r1UAQxxdR7LN69yR7ETyYdjeb_ZGLIKVVaUGQit6Gye6kTUmycTcpvv_ePF59KOhpYOYz3xm-X8ZeSnEihXOnUhlZGG3rU0RNLT1im0PrMduI2thCKVUdsWc53wkhpSv1U3ZUOmlqp_SGfbu-pZho7jz2fIiB-m684bHlyKeYZmx64j-LhFs-Lw3xBjMFfvn9ywXP2zzTwOfIB8K8JOI9YeDdyJs40nP2pMU-04uHesy-Xpxfn30srj5_-HT2_qrwlVFzUYVaoURfKeuq2vu6Cbp2NsjSBuF10MGWnqTXumy9RuPItOiD0FrIqvKkjtm7ve60NAMFT-OcsIcpdQOmLUTs4O_J2N3CTbwHbaSVpVgF3jwIpPhjoTzD0GVPfY8jxSWDdEY7aYXboWKP-hRzTtQezkgBuzxgZz7szId9HuvKqz_fOyz8DmAFXu-BLk5wF5c0rm7BtFoKyoECbTVMoV25t__g_nv3F-yOo3Q</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Specht, Aaron J</creator><creator>Weisskopf, Marc G</creator><creator>Nie, Linda Huiling</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><author>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bone and Bones - metabolism</topic><topic>bone lead</topic><topic>exposure assessment</topic><topic>lead</topic><topic>Lead - metabolism</topic><topic>Limit of Detection</topic><topic>metals</topic><topic>Monte Carlo Method</topic><topic>Spectrometry, X-Ray Emission - instrumentation</topic><topic>x-ray fluorescence</topic><topic>XRF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Specht, Aaron J</creatorcontrib><creatorcontrib>Weisskopf, Marc G</creatorcontrib><creatorcontrib>Nie, Linda Huiling</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Specht, Aaron J</au><au>Weisskopf, Marc G</au><au>Nie, Linda Huiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</atitle><jtitle>Physiological measurement</jtitle><stitle>PM</stitle><addtitle>Physiol. Meas</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>38</volume><issue>3</issue><spage>575</spage><epage>585</epage><pages>575-585</pages><issn>0967-3334</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28169835</pmid><doi>10.1088/1361-6579/aa5efe</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0967-3334
ispartof Physiological measurement, 2017-03, Vol.38 (3), p.575-585
issn 0967-3334
1361-6579
language eng
recordid cdi_pubmed_primary_28169835
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Bone and Bones - metabolism
bone lead
exposure assessment
lead
Lead - metabolism
Limit of Detection
metals
Monte Carlo Method
Spectrometry, X-Ray Emission - instrumentation
x-ray fluorescence
XRF
title Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20modeling%20of%20a%20portable%20x-ray%20tube%20based%20KXRF%20system%20to%20measure%20lead%20in%20bone&rft.jtitle=Physiological%20measurement&rft.au=Specht,%20Aaron%20J&rft.date=2017-03-01&rft.volume=38&rft.issue=3&rft.spage=575&rft.epage=585&rft.pages=575-585&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/aa5efe&rft_dat=%3Cproquest_pubme%3E1865817080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865817080&rft_id=info:pmid/28169835&rfr_iscdi=true