Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone
Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overc...
Gespeichert in:
Veröffentlicht in: | Physiological measurement 2017-03, Vol.38 (3), p.575-585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 3 |
container_start_page | 575 |
container_title | Physiological measurement |
container_volume | 38 |
creator | Specht, Aaron J Weisskopf, Marc G Nie, Linda Huiling |
description | Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. |
doi_str_mv | 10.1088/1361-6579/aa5efe |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28169835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865817080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</originalsourceid><addsrcrecordid>eNp1kc9r1UAQxxdR7LN69yR7ETyYdjeb_ZGLIKVVaUGQit6Gye6kTUmycTcpvv_ePF59KOhpYOYz3xm-X8ZeSnEihXOnUhlZGG3rU0RNLT1im0PrMduI2thCKVUdsWc53wkhpSv1U3ZUOmlqp_SGfbu-pZho7jz2fIiB-m684bHlyKeYZmx64j-LhFs-Lw3xBjMFfvn9ywXP2zzTwOfIB8K8JOI9YeDdyJs40nP2pMU-04uHesy-Xpxfn30srj5_-HT2_qrwlVFzUYVaoURfKeuq2vu6Cbp2NsjSBuF10MGWnqTXumy9RuPItOiD0FrIqvKkjtm7ve60NAMFT-OcsIcpdQOmLUTs4O_J2N3CTbwHbaSVpVgF3jwIpPhjoTzD0GVPfY8jxSWDdEY7aYXboWKP-hRzTtQezkgBuzxgZz7szId9HuvKqz_fOyz8DmAFXu-BLk5wF5c0rm7BtFoKyoECbTVMoV25t__g_nv3F-yOo3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865817080</pqid></control><display><type>article</type><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</creator><creatorcontrib>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</creatorcontrib><description>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</description><identifier>ISSN: 0967-3334</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/aa5efe</identifier><identifier>PMID: 28169835</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Bone and Bones - metabolism ; bone lead ; exposure assessment ; lead ; Lead - metabolism ; Limit of Detection ; metals ; Monte Carlo Method ; Spectrometry, X-Ray Emission - instrumentation ; x-ray fluorescence ; XRF</subject><ispartof>Physiological measurement, 2017-03, Vol.38 (3), p.575-585</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</citedby><cites>FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6579/aa5efe/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28169835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Specht, Aaron J</creatorcontrib><creatorcontrib>Weisskopf, Marc G</creatorcontrib><creatorcontrib>Nie, Linda Huiling</creatorcontrib><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><title>Physiological measurement</title><addtitle>PM</addtitle><addtitle>Physiol. Meas</addtitle><description>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</description><subject>Bone and Bones - metabolism</subject><subject>bone lead</subject><subject>exposure assessment</subject><subject>lead</subject><subject>Lead - metabolism</subject><subject>Limit of Detection</subject><subject>metals</subject><subject>Monte Carlo Method</subject><subject>Spectrometry, X-Ray Emission - instrumentation</subject><subject>x-ray fluorescence</subject><subject>XRF</subject><issn>0967-3334</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9r1UAQxxdR7LN69yR7ETyYdjeb_ZGLIKVVaUGQit6Gye6kTUmycTcpvv_ePF59KOhpYOYz3xm-X8ZeSnEihXOnUhlZGG3rU0RNLT1im0PrMduI2thCKVUdsWc53wkhpSv1U3ZUOmlqp_SGfbu-pZho7jz2fIiB-m684bHlyKeYZmx64j-LhFs-Lw3xBjMFfvn9ywXP2zzTwOfIB8K8JOI9YeDdyJs40nP2pMU-04uHesy-Xpxfn30srj5_-HT2_qrwlVFzUYVaoURfKeuq2vu6Cbp2NsjSBuF10MGWnqTXumy9RuPItOiD0FrIqvKkjtm7ve60NAMFT-OcsIcpdQOmLUTs4O_J2N3CTbwHbaSVpVgF3jwIpPhjoTzD0GVPfY8jxSWDdEY7aYXboWKP-hRzTtQezkgBuzxgZz7szId9HuvKqz_fOyz8DmAFXu-BLk5wF5c0rm7BtFoKyoECbTVMoV25t__g_nv3F-yOo3Q</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Specht, Aaron J</creator><creator>Weisskopf, Marc G</creator><creator>Nie, Linda Huiling</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</title><author>Specht, Aaron J ; Weisskopf, Marc G ; Nie, Linda Huiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-4d93a1ac437849cc9bd5987d127d0c5d5d72ce1c552fc5a68e6facd0550144ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bone and Bones - metabolism</topic><topic>bone lead</topic><topic>exposure assessment</topic><topic>lead</topic><topic>Lead - metabolism</topic><topic>Limit of Detection</topic><topic>metals</topic><topic>Monte Carlo Method</topic><topic>Spectrometry, X-Ray Emission - instrumentation</topic><topic>x-ray fluorescence</topic><topic>XRF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Specht, Aaron J</creatorcontrib><creatorcontrib>Weisskopf, Marc G</creatorcontrib><creatorcontrib>Nie, Linda Huiling</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Specht, Aaron J</au><au>Weisskopf, Marc G</au><au>Nie, Linda Huiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone</atitle><jtitle>Physiological measurement</jtitle><stitle>PM</stitle><addtitle>Physiol. Meas</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>38</volume><issue>3</issue><spage>575</spage><epage>585</epage><pages>575-585</pages><issn>0967-3334</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>Objective. K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g−1 bone mineral using a cadmium zinc telluride detector. Significance. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28169835</pmid><doi>10.1088/1361-6579/aa5efe</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-3334 |
ispartof | Physiological measurement, 2017-03, Vol.38 (3), p.575-585 |
issn | 0967-3334 1361-6579 |
language | eng |
recordid | cdi_pubmed_primary_28169835 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Bone and Bones - metabolism bone lead exposure assessment lead Lead - metabolism Limit of Detection metals Monte Carlo Method Spectrometry, X-Ray Emission - instrumentation x-ray fluorescence XRF |
title | Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20modeling%20of%20a%20portable%20x-ray%20tube%20based%20KXRF%20system%20to%20measure%20lead%20in%20bone&rft.jtitle=Physiological%20measurement&rft.au=Specht,%20Aaron%20J&rft.date=2017-03-01&rft.volume=38&rft.issue=3&rft.spage=575&rft.epage=585&rft.pages=575-585&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/aa5efe&rft_dat=%3Cproquest_pubme%3E1865817080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865817080&rft_id=info:pmid/28169835&rfr_iscdi=true |