Adaptive and compressive matched field processing

Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2017-01, Vol.141 (1), p.92-103
Hauptverfasser: Gemba, Kay L., Hodgkiss, William S., Gerstoft, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 92
container_title The Journal of the Acoustical Society of America
container_volume 141
creator Gemba, Kay L.
Hodgkiss, William S.
Gerstoft, Peter
description Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.
doi_str_mv 10.1121/1.4973528
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28147570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865555597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozji68A9Ilyp0zM2jTZbD4AsG3Og6pHlopS-TdsB_b8uMutK7uRzOx7ncg9A54CUAgRtYMplTTsQBmgMnOBWcsEM0xxhDymSWzdBJjO-j5ILKYzQjAljOczxHsLK668utS3RjE9PWXXAxTrrWvXlzNvGlq2zShdZMRvN6io68rqI72-8Ferm7fV4_pJun-8f1apMaynmfgtOSYY855cyD19wVmGhWQO6d5cQUeSF9oY01ucNydDMpqIDMGC6Ez4Au0OUudzz9MbjYq7qMxlWVblw7RAUi49OMny_Q1Q41oY0xOK-6UNY6fCrAampIgdo3NLIX-9ihqJ39Ib8rGYHrHRBN2eu-bJt_0_6Et234BVVnPf0C5Q18Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865555597</pqid></control><display><type>article</type><title>Adaptive and compressive matched field processing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</creator><creatorcontrib>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</creatorcontrib><description>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4973528</identifier><identifier>PMID: 28147570</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2017-01, Vol.141 (1), p.92-103</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</citedby><cites>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4973528$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28147570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemba, Kay L.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><title>Adaptive and compressive matched field processing</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMozji68A9Ilyp0zM2jTZbD4AsG3Og6pHlopS-TdsB_b8uMutK7uRzOx7ncg9A54CUAgRtYMplTTsQBmgMnOBWcsEM0xxhDymSWzdBJjO-j5ILKYzQjAljOczxHsLK668utS3RjE9PWXXAxTrrWvXlzNvGlq2zShdZMRvN6io68rqI72-8Ferm7fV4_pJun-8f1apMaynmfgtOSYY855cyD19wVmGhWQO6d5cQUeSF9oY01ucNydDMpqIDMGC6Ez4Au0OUudzz9MbjYq7qMxlWVblw7RAUi49OMny_Q1Q41oY0xOK-6UNY6fCrAampIgdo3NLIX-9ihqJ39Ib8rGYHrHRBN2eu-bJt_0_6Et234BVVnPf0C5Q18Dw</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Gemba, Kay L.</creator><creator>Hodgkiss, William S.</creator><creator>Gerstoft, Peter</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Adaptive and compressive matched field processing</title><author>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gemba, Kay L.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gemba, Kay L.</au><au>Hodgkiss, William S.</au><au>Gerstoft, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive and compressive matched field processing</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2017-01</date><risdate>2017</risdate><volume>141</volume><issue>1</issue><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</abstract><cop>United States</cop><pmid>28147570</pmid><doi>10.1121/1.4973528</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2017-01, Vol.141 (1), p.92-103
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmed_primary_28147570
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Adaptive and compressive matched field processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20and%20compressive%20matched%20field%20processing&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gemba,%20Kay%20L.&rft.date=2017-01&rft.volume=141&rft.issue=1&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4973528&rft_dat=%3Cproquest_pubme%3E1865555597%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865555597&rft_id=info:pmid/28147570&rfr_iscdi=true