Adaptive and compressive matched field processing
Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented usi...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2017-01, Vol.141 (1), p.92-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 141 |
creator | Gemba, Kay L. Hodgkiss, William S. Gerstoft, Peter |
description | Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch. |
doi_str_mv | 10.1121/1.4973528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28147570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865555597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozji68A9Ilyp0zM2jTZbD4AsG3Og6pHlopS-TdsB_b8uMutK7uRzOx7ncg9A54CUAgRtYMplTTsQBmgMnOBWcsEM0xxhDymSWzdBJjO-j5ILKYzQjAljOczxHsLK668utS3RjE9PWXXAxTrrWvXlzNvGlq2zShdZMRvN6io68rqI72-8Ferm7fV4_pJun-8f1apMaynmfgtOSYY855cyD19wVmGhWQO6d5cQUeSF9oY01ucNydDMpqIDMGC6Ez4Au0OUudzz9MbjYq7qMxlWVblw7RAUi49OMny_Q1Q41oY0xOK-6UNY6fCrAampIgdo3NLIX-9ihqJ39Ib8rGYHrHRBN2eu-bJt_0_6Et234BVVnPf0C5Q18Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865555597</pqid></control><display><type>article</type><title>Adaptive and compressive matched field processing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</creator><creatorcontrib>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</creatorcontrib><description>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4973528</identifier><identifier>PMID: 28147570</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2017-01, Vol.141 (1), p.92-103</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</citedby><cites>FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4973528$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28147570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemba, Kay L.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><title>Adaptive and compressive matched field processing</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMozji68A9Ilyp0zM2jTZbD4AsG3Og6pHlopS-TdsB_b8uMutK7uRzOx7ncg9A54CUAgRtYMplTTsQBmgMnOBWcsEM0xxhDymSWzdBJjO-j5ILKYzQjAljOczxHsLK668utS3RjE9PWXXAxTrrWvXlzNvGlq2zShdZMRvN6io68rqI72-8Ferm7fV4_pJun-8f1apMaynmfgtOSYY855cyD19wVmGhWQO6d5cQUeSF9oY01ucNydDMpqIDMGC6Ez4Au0OUudzz9MbjYq7qMxlWVblw7RAUi49OMny_Q1Q41oY0xOK-6UNY6fCrAampIgdo3NLIX-9ihqJ39Ib8rGYHrHRBN2eu-bJt_0_6Et234BVVnPf0C5Q18Dw</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Gemba, Kay L.</creator><creator>Hodgkiss, William S.</creator><creator>Gerstoft, Peter</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Adaptive and compressive matched field processing</title><author>Gemba, Kay L. ; Hodgkiss, William S. ; Gerstoft, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1ea940f05354f1fa5eb02a4b17fed52cb7b9fbacdc7e095eb6983816cc588f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gemba, Kay L.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gemba, Kay L.</au><au>Hodgkiss, William S.</au><au>Gerstoft, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive and compressive matched field processing</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2017-01</date><risdate>2017</risdate><volume>141</volume><issue>1</issue><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.</abstract><cop>United States</cop><pmid>28147570</pmid><doi>10.1121/1.4973528</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2017-01, Vol.141 (1), p.92-103 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_pubmed_primary_28147570 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Adaptive and compressive matched field processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20and%20compressive%20matched%20field%20processing&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gemba,%20Kay%20L.&rft.date=2017-01&rft.volume=141&rft.issue=1&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4973528&rft_dat=%3Cproquest_pubme%3E1865555597%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865555597&rft_id=info:pmid/28147570&rfr_iscdi=true |