A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices

This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2016-10, Vol.10 (5), p.945-954
Hauptverfasser: Sun, Alexander, Venkatesh, A. G., Hall, Drew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 5
container_start_page 945
container_title IEEE transactions on biomedical circuits and systems
container_volume 10
creator Sun, Alexander
Venkatesh, A. G.
Hall, Drew A.
description This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of
doi_str_mv 10.1109/TBCAS.2016.2586504
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28113176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576627</ieee_id><sourcerecordid>1861613634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</originalsourceid><addsrcrecordid>eNpdkc1OGzEURq2KqlDgBVqpGolNNxP877i7ENKCFERV0vXI414To4kN9gxS3x4PCVmw8rW-cz_p6iD0heAJIVifry7ms7sJxUROqJhKgfkHdEQ0x7XWGh-MM6M1F1wcos85P2AsJNX0EzqkU0IYUfIIPc2qm6Hrfb0Cuw7-aYDqD9gYnL8fkmk7qBYd2D5Fu4aNt6arLnzMEHJMP6pFKIQP99VvSDmGEl6B6fp1dROD72MaIx_Kr_Wl6BKevYV8gj4602U43b3H6O_PxWp-VS9vf13PZ8vaMi36WoLCDCvlrHMtd9ZScIKaVmvmlMbOCDAa81Ybx8A5II5rKZQDQRmlRrNj9H3b-5hiOSv3zcZnC11nAsQhN2QqiSRMMl7Qs3foQxxSuWekuJKsUKxQdEvZFHNO4JrH5Dcm_W8IbkYhzauQZhTS7ISUpW-76qHdwL_9ypuBAnzdAh4A9rESSkqq2AtqFZBz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847633633</pqid></control><display><type>article</type><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</creator><creatorcontrib>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</creatorcontrib><description>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of &lt;; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have &lt;; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2586504</identifier><identifier>PMID: 28113176</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplifiers, Electronic ; Biomarkers ; Biosensing Techniques - instrumentation ; Biosensors ; Conductometry - instrumentation ; Current measurement ; Dehydration ; Diabetes mellitus ; Diagnosis, Computer-Assisted - instrumentation ; Electrical measurement ; Electrochemical biosensor ; Electrochemistry ; Electrodes ; Electronic devices ; Equipment Design ; Equipment Failure Analysis ; glucose ; Google Ara ; Hydrogen ions ; Impedance ; Impedance measurement ; Integration ; Ions ; Lactoferrin ; mHealth ; Mobile handsets ; Monitoring, Ambulatory - instrumentation ; PCB ; PCB compounds ; Personal health ; pH effects ; Phase error ; point-of-care ; Polychlorinated biphenyls ; potentiostat ; Prototypes ; Reconfiguration ; Reproducibility of Results ; Self Care - instrumentation ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted - instrumentation ; Smartphone ; Smartphones ; Sweat ; Systems Integration ; Telemedicine - instrumentation ; Urinary tract ; Voltage measurement ; Wearable technology ; wearables</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.945-954</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</citedby><cites>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7576627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Alexander</creatorcontrib><creatorcontrib>Venkatesh, A. G.</creatorcontrib><creatorcontrib>Hall, Drew A.</creatorcontrib><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of &lt;; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have &lt;; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</description><subject>Amplifiers, Electronic</subject><subject>Biomarkers</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>Conductometry - instrumentation</subject><subject>Current measurement</subject><subject>Dehydration</subject><subject>Diabetes mellitus</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Electrical measurement</subject><subject>Electrochemical biosensor</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electronic devices</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>glucose</subject><subject>Google Ara</subject><subject>Hydrogen ions</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Integration</subject><subject>Ions</subject><subject>Lactoferrin</subject><subject>mHealth</subject><subject>Mobile handsets</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>PCB</subject><subject>PCB compounds</subject><subject>Personal health</subject><subject>pH effects</subject><subject>Phase error</subject><subject>point-of-care</subject><subject>Polychlorinated biphenyls</subject><subject>potentiostat</subject><subject>Prototypes</subject><subject>Reconfiguration</subject><subject>Reproducibility of Results</subject><subject>Self Care - instrumentation</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Sweat</subject><subject>Systems Integration</subject><subject>Telemedicine - instrumentation</subject><subject>Urinary tract</subject><subject>Voltage measurement</subject><subject>Wearable technology</subject><subject>wearables</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1OGzEURq2KqlDgBVqpGolNNxP877i7ENKCFERV0vXI414To4kN9gxS3x4PCVmw8rW-cz_p6iD0heAJIVifry7ms7sJxUROqJhKgfkHdEQ0x7XWGh-MM6M1F1wcos85P2AsJNX0EzqkU0IYUfIIPc2qm6Hrfb0Cuw7-aYDqD9gYnL8fkmk7qBYd2D5Fu4aNt6arLnzMEHJMP6pFKIQP99VvSDmGEl6B6fp1dROD72MaIx_Kr_Wl6BKevYV8gj4602U43b3H6O_PxWp-VS9vf13PZ8vaMi36WoLCDCvlrHMtd9ZScIKaVmvmlMbOCDAa81Ybx8A5II5rKZQDQRmlRrNj9H3b-5hiOSv3zcZnC11nAsQhN2QqiSRMMl7Qs3foQxxSuWekuJKsUKxQdEvZFHNO4JrH5Dcm_W8IbkYhzauQZhTS7ISUpW-76qHdwL_9ypuBAnzdAh4A9rESSkqq2AtqFZBz</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Sun, Alexander</creator><creator>Venkatesh, A. G.</creator><creator>Hall, Drew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><author>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplifiers, Electronic</topic><topic>Biomarkers</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>Conductometry - instrumentation</topic><topic>Current measurement</topic><topic>Dehydration</topic><topic>Diabetes mellitus</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Electrical measurement</topic><topic>Electrochemical biosensor</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electronic devices</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>glucose</topic><topic>Google Ara</topic><topic>Hydrogen ions</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Integration</topic><topic>Ions</topic><topic>Lactoferrin</topic><topic>mHealth</topic><topic>Mobile handsets</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>PCB</topic><topic>PCB compounds</topic><topic>Personal health</topic><topic>pH effects</topic><topic>Phase error</topic><topic>point-of-care</topic><topic>Polychlorinated biphenyls</topic><topic>potentiostat</topic><topic>Prototypes</topic><topic>Reconfiguration</topic><topic>Reproducibility of Results</topic><topic>Self Care - instrumentation</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Sweat</topic><topic>Systems Integration</topic><topic>Telemedicine - instrumentation</topic><topic>Urinary tract</topic><topic>Voltage measurement</topic><topic>Wearable technology</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Alexander</creatorcontrib><creatorcontrib>Venkatesh, A. G.</creatorcontrib><creatorcontrib>Hall, Drew A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Alexander</au><au>Venkatesh, A. G.</au><au>Hall, Drew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2016-10</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>945</spage><epage>954</epage><pages>945-954</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of &lt;; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have &lt;; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113176</pmid><doi>10.1109/TBCAS.2016.2586504</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.945-954
issn 1932-4545
1940-9990
language eng
recordid cdi_pubmed_primary_28113176
source IEEE Electronic Library (IEL)
subjects Amplifiers, Electronic
Biomarkers
Biosensing Techniques - instrumentation
Biosensors
Conductometry - instrumentation
Current measurement
Dehydration
Diabetes mellitus
Diagnosis, Computer-Assisted - instrumentation
Electrical measurement
Electrochemical biosensor
Electrochemistry
Electrodes
Electronic devices
Equipment Design
Equipment Failure Analysis
glucose
Google Ara
Hydrogen ions
Impedance
Impedance measurement
Integration
Ions
Lactoferrin
mHealth
Mobile handsets
Monitoring, Ambulatory - instrumentation
PCB
PCB compounds
Personal health
pH effects
Phase error
point-of-care
Polychlorinated biphenyls
potentiostat
Prototypes
Reconfiguration
Reproducibility of Results
Self Care - instrumentation
Sensitivity and Specificity
Signal Processing, Computer-Assisted - instrumentation
Smartphone
Smartphones
Sweat
Systems Integration
Telemedicine - instrumentation
Urinary tract
Voltage measurement
Wearable technology
wearables
title A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Technique%20Reconfigurable%20Electrochemical%20Biosensor:%20Enabling%20Personal%20Health%20Monitoring%20in%20Mobile%20Devices&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Sun,%20Alexander&rft.date=2016-10&rft.volume=10&rft.issue=5&rft.spage=945&rft.epage=954&rft.pages=945-954&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2586504&rft_dat=%3Cproquest_RIE%3E1861613634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847633633&rft_id=info:pmid/28113176&rft_ieee_id=7576627&rfr_iscdi=true