A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices
This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2016-10, Vol.10 (5), p.945-954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 954 |
---|---|
container_issue | 5 |
container_start_page | 945 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 10 |
creator | Sun, Alexander Venkatesh, A. G. Hall, Drew A. |
description | This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of |
doi_str_mv | 10.1109/TBCAS.2016.2586504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28113176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576627</ieee_id><sourcerecordid>1861613634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</originalsourceid><addsrcrecordid>eNpdkc1OGzEURq2KqlDgBVqpGolNNxP877i7ENKCFERV0vXI414To4kN9gxS3x4PCVmw8rW-cz_p6iD0heAJIVifry7ms7sJxUROqJhKgfkHdEQ0x7XWGh-MM6M1F1wcos85P2AsJNX0EzqkU0IYUfIIPc2qm6Hrfb0Cuw7-aYDqD9gYnL8fkmk7qBYd2D5Fu4aNt6arLnzMEHJMP6pFKIQP99VvSDmGEl6B6fp1dROD72MaIx_Kr_Wl6BKevYV8gj4602U43b3H6O_PxWp-VS9vf13PZ8vaMi36WoLCDCvlrHMtd9ZScIKaVmvmlMbOCDAa81Ybx8A5II5rKZQDQRmlRrNj9H3b-5hiOSv3zcZnC11nAsQhN2QqiSRMMl7Qs3foQxxSuWekuJKsUKxQdEvZFHNO4JrH5Dcm_W8IbkYhzauQZhTS7ISUpW-76qHdwL_9ypuBAnzdAh4A9rESSkqq2AtqFZBz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847633633</pqid></control><display><type>article</type><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</creator><creatorcontrib>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</creatorcontrib><description>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of <; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have <; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2586504</identifier><identifier>PMID: 28113176</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplifiers, Electronic ; Biomarkers ; Biosensing Techniques - instrumentation ; Biosensors ; Conductometry - instrumentation ; Current measurement ; Dehydration ; Diabetes mellitus ; Diagnosis, Computer-Assisted - instrumentation ; Electrical measurement ; Electrochemical biosensor ; Electrochemistry ; Electrodes ; Electronic devices ; Equipment Design ; Equipment Failure Analysis ; glucose ; Google Ara ; Hydrogen ions ; Impedance ; Impedance measurement ; Integration ; Ions ; Lactoferrin ; mHealth ; Mobile handsets ; Monitoring, Ambulatory - instrumentation ; PCB ; PCB compounds ; Personal health ; pH effects ; Phase error ; point-of-care ; Polychlorinated biphenyls ; potentiostat ; Prototypes ; Reconfiguration ; Reproducibility of Results ; Self Care - instrumentation ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted - instrumentation ; Smartphone ; Smartphones ; Sweat ; Systems Integration ; Telemedicine - instrumentation ; Urinary tract ; Voltage measurement ; Wearable technology ; wearables</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.945-954</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</citedby><cites>FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7576627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Alexander</creatorcontrib><creatorcontrib>Venkatesh, A. G.</creatorcontrib><creatorcontrib>Hall, Drew A.</creatorcontrib><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of <; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have <; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</description><subject>Amplifiers, Electronic</subject><subject>Biomarkers</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>Conductometry - instrumentation</subject><subject>Current measurement</subject><subject>Dehydration</subject><subject>Diabetes mellitus</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Electrical measurement</subject><subject>Electrochemical biosensor</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electronic devices</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>glucose</subject><subject>Google Ara</subject><subject>Hydrogen ions</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Integration</subject><subject>Ions</subject><subject>Lactoferrin</subject><subject>mHealth</subject><subject>Mobile handsets</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>PCB</subject><subject>PCB compounds</subject><subject>Personal health</subject><subject>pH effects</subject><subject>Phase error</subject><subject>point-of-care</subject><subject>Polychlorinated biphenyls</subject><subject>potentiostat</subject><subject>Prototypes</subject><subject>Reconfiguration</subject><subject>Reproducibility of Results</subject><subject>Self Care - instrumentation</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Sweat</subject><subject>Systems Integration</subject><subject>Telemedicine - instrumentation</subject><subject>Urinary tract</subject><subject>Voltage measurement</subject><subject>Wearable technology</subject><subject>wearables</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1OGzEURq2KqlDgBVqpGolNNxP877i7ENKCFERV0vXI414To4kN9gxS3x4PCVmw8rW-cz_p6iD0heAJIVifry7ms7sJxUROqJhKgfkHdEQ0x7XWGh-MM6M1F1wcos85P2AsJNX0EzqkU0IYUfIIPc2qm6Hrfb0Cuw7-aYDqD9gYnL8fkmk7qBYd2D5Fu4aNt6arLnzMEHJMP6pFKIQP99VvSDmGEl6B6fp1dROD72MaIx_Kr_Wl6BKevYV8gj4602U43b3H6O_PxWp-VS9vf13PZ8vaMi36WoLCDCvlrHMtd9ZScIKaVmvmlMbOCDAa81Ybx8A5II5rKZQDQRmlRrNj9H3b-5hiOSv3zcZnC11nAsQhN2QqiSRMMl7Qs3foQxxSuWekuJKsUKxQdEvZFHNO4JrH5Dcm_W8IbkYhzauQZhTS7ISUpW-76qHdwL_9ypuBAnzdAh4A9rESSkqq2AtqFZBz</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Sun, Alexander</creator><creator>Venkatesh, A. G.</creator><creator>Hall, Drew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</title><author>Sun, Alexander ; Venkatesh, A. G. ; Hall, Drew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6e703077fcffb4fcc2ef52ab993f790fa5ea904b9af3effe1f49657fe52322a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplifiers, Electronic</topic><topic>Biomarkers</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>Conductometry - instrumentation</topic><topic>Current measurement</topic><topic>Dehydration</topic><topic>Diabetes mellitus</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Electrical measurement</topic><topic>Electrochemical biosensor</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electronic devices</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>glucose</topic><topic>Google Ara</topic><topic>Hydrogen ions</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Integration</topic><topic>Ions</topic><topic>Lactoferrin</topic><topic>mHealth</topic><topic>Mobile handsets</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>PCB</topic><topic>PCB compounds</topic><topic>Personal health</topic><topic>pH effects</topic><topic>Phase error</topic><topic>point-of-care</topic><topic>Polychlorinated biphenyls</topic><topic>potentiostat</topic><topic>Prototypes</topic><topic>Reconfiguration</topic><topic>Reproducibility of Results</topic><topic>Self Care - instrumentation</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Sweat</topic><topic>Systems Integration</topic><topic>Telemedicine - instrumentation</topic><topic>Urinary tract</topic><topic>Voltage measurement</topic><topic>Wearable technology</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Alexander</creatorcontrib><creatorcontrib>Venkatesh, A. G.</creatorcontrib><creatorcontrib>Hall, Drew A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Alexander</au><au>Venkatesh, A. G.</au><au>Hall, Drew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2016-10</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>945</spage><epage>954</epage><pages>945-954</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A 3.9 × 1.65 cm 2 PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to ±200 μA measurement range. When used to detect pH, the potentiometric mode achieves a resolution of <; 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 MΩ and has been shown to have <; 6° of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients (~200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113176</pmid><doi>10.1109/TBCAS.2016.2586504</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.945-954 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_pubmed_primary_28113176 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifiers, Electronic Biomarkers Biosensing Techniques - instrumentation Biosensors Conductometry - instrumentation Current measurement Dehydration Diabetes mellitus Diagnosis, Computer-Assisted - instrumentation Electrical measurement Electrochemical biosensor Electrochemistry Electrodes Electronic devices Equipment Design Equipment Failure Analysis glucose Google Ara Hydrogen ions Impedance Impedance measurement Integration Ions Lactoferrin mHealth Mobile handsets Monitoring, Ambulatory - instrumentation PCB PCB compounds Personal health pH effects Phase error point-of-care Polychlorinated biphenyls potentiostat Prototypes Reconfiguration Reproducibility of Results Self Care - instrumentation Sensitivity and Specificity Signal Processing, Computer-Assisted - instrumentation Smartphone Smartphones Sweat Systems Integration Telemedicine - instrumentation Urinary tract Voltage measurement Wearable technology wearables |
title | A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Technique%20Reconfigurable%20Electrochemical%20Biosensor:%20Enabling%20Personal%20Health%20Monitoring%20in%20Mobile%20Devices&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Sun,%20Alexander&rft.date=2016-10&rft.volume=10&rft.issue=5&rft.spage=945&rft.epage=954&rft.pages=945-954&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2586504&rft_dat=%3Cproquest_RIE%3E1861613634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847633633&rft_id=info:pmid/28113176&rft_ieee_id=7576627&rfr_iscdi=true |